-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun.py
215 lines (183 loc) · 7.57 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import argparse
import random
import warnings
from os.path import dirname, join
import numpy as np
import torch
import wandb
from ignite.contrib.handlers import CosineAnnealingScheduler, create_lr_scheduler_with_warmup
from ignite.contrib.metrics import AveragePrecision
from ignite.engine import Events, create_supervised_evaluator, create_supervised_trainer
from ignite.handlers import ModelCheckpoint, global_step_from_engine
from ignite.metrics import Accuracy, Fbeta, Loss, Precision, Recall, RunningAverage
from sklearn.preprocessing import StandardScaler
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from model import MultiLayerPerceptron
WANDB_PROJECT = 'Mood Prediction'
DATA_DIR = join(dirname(__file__), 'data')
def load_data(feature):
features = np.load(join(DATA_DIR, f'{feature}_source.npy'))
moods = np.load(join(DATA_DIR, f'mood_target.npy'))
train_idxs = np.load(join(DATA_DIR, f'train_idx.npy'))
val_idxs = np.load(join(DATA_DIR, f'val_idx.npy'))
test_idxs = np.load(join(DATA_DIR, f'test_idx.npy'))
train_set = TensorDataset(
torch.from_numpy(features[train_idxs]),
torch.from_numpy(moods[train_idxs]))
val_set = TensorDataset(
torch.from_numpy(features[val_idxs]),
torch.from_numpy(moods[val_idxs]))
test_set = TensorDataset(
torch.from_numpy(features[test_idxs]),
torch.from_numpy(moods[test_idxs]))
return train_set, val_set, test_set
def add_tag(metrics, tag):
return {f'{tag}/{k}': v for k, v in metrics.items()}
def activate_output(output):
y_pred, y = output
return torch.sigmoid(y_pred), y
def threshold_output(output):
y_pred, y = activate_output(output)
return torch.round(y_pred), y
def set_random_seed(seed):
seed = seed if seed is not None else np.random.randint(1, int(1e9))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
return seed
def parse_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--exp_tags', nargs='*', default=None,
help='Tags to use for W&B run')
parser.add_argument('--seed', type=int, default=None,
help='Random seed to set')
parser.add_argument('--gpu_id', type=int, default=None,
help='GPU to use')
parser.add_argument('--n_workers', type=int, default=4,
help='Number of workers for data loading.')
parser.add_argument('--feature', default='tp',
help='Input embedding to use (tp=taste profile)')
parser.add_argument('--batch_size', type=int, default=128,
help='Mini-batch size for training')
parser.add_argument('--n_epochs', type=int, default=100,
help='Number of epochs to train.')
parser.add_argument('--n_layers', type=int, default=4,
help='Number of neural network layers.')
parser.add_argument('--n_units', type=int, default=3909,
help='Number of units per neural network layer.')
parser.add_argument('--dropout', type=float, default=0.25,
help='Dropout probability for all layers.')
parser.add_argument('--weight_decay', type=float, default=0.0,
help='Weight decay factor.')
parser.add_argument('--lr', type=float, default=4e-4,
help='Initial learning rate.')
config = parser.parse_args()
return config
if __name__ == '__main__':
cfg = parse_args()
cfg.seed = set_random_seed(cfg.seed)
wandb.init(
project=WANDB_PROJECT,
tags=cfg.exp_tags,
config=cfg,
config_exclude_keys=['exp_tags'])
wandb.run.save()
device = torch.device(
f'cuda:{cfg.gpu_id}'
if torch.cuda.is_available() and cfg.gpu_id is not None
else 'cpu')
print(f'\nUsing device: {device}')
train_set, val_set, test_set = load_data(cfg.feature)
train_loader = DataLoader(
train_set,
batch_size=cfg.batch_size,
shuffle=True,
num_workers=cfg.n_workers)
val_loader = DataLoader(
val_set,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.n_workers,
drop_last=False)
print(f'\nNo. Train: {len(train_set):6d}')
print(f'No. Val: {len(val_set):6d}')
print(f'No. Test: {len(test_set):6d}')
scaler = StandardScaler().fit(train_set[:][0])
model = MultiLayerPerceptron(
in_dim=train_set[0][0].shape[0],
out_dim=train_set[0][1].shape[0],
n_layers=cfg.n_layers,
n_units=cfg.n_units,
dropout=cfg.dropout,
shift=torch.from_numpy(scaler.mean_.astype(np.float32)),
scale=torch.from_numpy(scaler.scale_.astype(np.float32))
).to(device)
print('\nModel:\n')
print(model)
wandb.watch(model)
loss = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(
model.parameters(),
lr=cfg.lr,
weight_decay=cfg.weight_decay)
trainer = create_supervised_trainer(model, optimizer, loss, device)
RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss')
trainer.add_event_handler(
Events.ITERATION_COMPLETED,
create_lr_scheduler_with_warmup(
CosineAnnealingScheduler(
optimizer,
param_name='lr',
start_value=cfg.lr,
end_value=0,
cycle_size=len(train_loader) * cfg.n_epochs,
start_value_mult=0,
end_value_mult=0),
warmup_start_value=0.0,
warmup_end_value=cfg.lr,
warmup_duration=len(train_loader)
)
)
evaluator = create_supervised_evaluator(
model, metrics={
'loss': Loss(loss),
'acc_smpl': Accuracy(threshold_output, is_multilabel=True),
'p': Precision(threshold_output, average=True),
'r': Recall(threshold_output, average=True),
'f1': Fbeta(1.0, output_transform=threshold_output),
'ap': AveragePrecision(output_transform=activate_output)
},
device=device)
model_checkpoint = ModelCheckpoint(
dirname=wandb.run.dir,
filename_prefix='best',
require_empty=False,
score_function=lambda e: e.state.metrics['ap'],
global_step_transform=global_step_from_engine(trainer))
evaluator.add_event_handler(
Events.COMPLETED, model_checkpoint, {'model': model})
@trainer.on(Events.EPOCH_COMPLETED)
def validate(trainer):
evaluator.run(val_loader)
wandb.log(trainer.state.metrics, step=trainer.state.epoch)
wandb.log(add_tag(evaluator.state.metrics, 'val'), step=trainer.state.epoch)
wandb.log({'Lr': optimizer.param_groups[0]['lr']}, step=trainer.state.epoch)
print(
f'Epoch {trainer.state.epoch:3d}:'
f' Tr [{" ".join(f"{m}={v:.3f}" for m, v in trainer.state.metrics.items())}]'
f' Va [{" ".join(f"{m}={v:.3f}" for m, v in evaluator.state.metrics.items())}]'
)
print('\nTraining:\n')
# ignore warnings from metrics
with warnings.catch_warnings():
warnings.simplefilter('ignore')
trainer.run(train_loader, max_epochs=cfg.n_epochs)
model.load_state_dict(torch.load(model_checkpoint.last_checkpoint))
model.eval()
with torch.no_grad():
preds = torch.sigmoid(model(test_set[:][0].to(device))).cpu().numpy()
np.save(join(wandb.run.dir, 'test_predictions.npy'), preds)