diff --git a/docs/extras/modules/data_connection/document_loaders/integrations/geopandas.ipynb b/docs/extras/modules/data_connection/document_loaders/integrations/geopandas.ipynb new file mode 100644 index 0000000000000..c99a3f3800e95 --- /dev/null +++ b/docs/extras/modules/data_connection/document_loaders/integrations/geopandas.ipynb @@ -0,0 +1,199 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ca4c8c2a", + "metadata": {}, + "source": [ + "# Geopandas\n", + "\n", + "[Geopandas](https://geopandas.org/en/stable/index.html) is an open source project to make working with geospatial data in python easier. \n", + "\n", + "GeoPandas extends the datatypes used by pandas to allow spatial operations on geometric types. \n", + "\n", + "Geometric operations are performed by shapely. Geopandas further depends on fiona for file access and matplotlib for plotting.\n", + "\n", + "LLM applications (chat, QA) that utilize geospatial data are an interesting area for exploration." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "00b3bf80", + "metadata": {}, + "outputs": [], + "source": [ + "! pip install sodapy\n", + "! pip install pandas\n", + "! pip install geopandas" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "cecc9320", + "metadata": {}, + "outputs": [], + "source": [ + "import ast\n", + "import pandas as pd\n", + "import geopandas as gpd\n", + "from langchain.document_loaders import OpenCityDataLoader" + ] + }, + { + "cell_type": "markdown", + "id": "04981332", + "metadata": {}, + "source": [ + "Create a GeoPandas dataframe from [`Open City Data`](https://python.langchain.com/docs/modules/data_connection/document_loaders/integrations/open_city_data) as an example input." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5e7de46b", + "metadata": {}, + "outputs": [], + "source": [ + "# Load Open City Data\n", + "dataset = \"tmnf-yvry\" # San Francisco crime data\n", + "loader = OpenCityDataLoader(city_id=\"data.sfgov.org\", dataset_id=dataset, limit=5000)\n", + "docs = loader.load()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "7cda2e38", + "metadata": {}, + "outputs": [], + "source": [ + "# Convert list of dictionaries to DataFrame\n", + "df = pd.DataFrame([ast.literal_eval(d.page_content) for d in docs])\n", + "\n", + "# Extract latitude and longitude\n", + "df[\"Latitude\"] = df[\"location\"].apply(lambda loc: loc[\"coordinates\"][1])\n", + "df[\"Longitude\"] = df[\"location\"].apply(lambda loc: loc[\"coordinates\"][0])\n", + "\n", + "# Create geopandas DF\n", + "gdf = gpd.GeoDataFrame(\n", + " df, geometry=gpd.points_from_xy(df.Longitude, df.Latitude), crs=\"EPSG:4326\"\n", + ")\n", + "\n", + "# Only keep valid longitudes and latitudes for San Francisco\n", + "gdf = gdf[\n", + " (gdf[\"Longitude\"] >= -123.173825)\n", + " & (gdf[\"Longitude\"] <= -122.281780)\n", + " & (gdf[\"Latitude\"] >= 37.623983)\n", + " & (gdf[\"Latitude\"] <= 37.929824)\n", + "]" + ] + }, + { + "cell_type": "markdown", + "id": "030a535c", + "metadata": {}, + "source": [ + "Visiualization of the sample of SF crimne data. " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "8148a63e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAALUCAYAAAA437ItAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eXxU1f3//55kgGCBJLjUhSVErStitVpBtgBJlbb4rfbTz+/TQvlW2360te2ntqUaSUJA0aK1tYutrUtRtK3a2tIaFWQLCK4VRD9qUXaXSgUCaAKZ5Pz+eH+P994z5+73ztyZeT0fj3nM3Jm7nO2eOe/73lJCCEEAAAAAAAAAALIoy3cBAAAAAAAAACCpQGACAAAAAAAAABsgMAEAAAAAAACADRCYAAAAAAAAAMAGCEwAAAAAAAAAYAMEJgAAAAAAAACwAQITAAAAAAAAANgAgQkAAAAAAAAAbIDABAAAAAAAAAA2QGACAAAAAAAAABt8CUy/+tWv6IwzzqBBgwbRoEGDaPTo0fToo48SEdHWrVsplUppXw8++KDtOQ8cOEBXXnklDRkyhPr370+nnnoq/frXv/7w9927d9O3vvUtOumkk6h///40bNgw+va3v00dHR0BqwwAAAAAAAAA3kj72XnIkCF044030oknnkhCCFq4cCFddNFF9MILL9DJJ59Mb7/9tmX/3/zmN3TTTTfRhRdeaHvOq666ipYvX06LFi2impoaWrJkCX3jG9+gY489lqZNm0ZvvfUWvfXWW3TzzTfTqaeeStu2baPLL7+c3nrrLXrooYeC1RoAAAAAAAAAPJASQogwJxg8eDDddNNNdNlll2X99vGPf5zOOussuvPOO22PP/300+k///M/qamp6cPvzj77bLrwwgvpuuuu0x7z4IMP0vTp0+n999+ndNqXzAcAAAAAAAAAngksbfT09NCDDz5I77//Po0ePTrr9+eff57Wr19Pv/zlLx3PM2bMGFq8eDFdeumldOyxx9LKlSvpn//8J/3kJz+xPaajo4MGDRrkKCwdPHiQDh48+OF2b28v7d69mw4//HBKpVIeaggAAAAAAAAoRoQQtH//fjr22GOprMzFS0n45MUXXxQf+chHRHl5uaisrBSPPPKIdr8rrrhCnHLKKa7n6+rqEl/+8pcFEYl0Oi369u0rFi5caLv/rl27xLBhw0RjY6PjeVtaWgQR4YUXXnjhhRdeeOGFF154aV87duxwlVd8m+QdOnSItm/fTh0dHfTQQw/RHXfcQatWraJTTz31w306OzvpmGOOoaamJvre977neL6bb76Zfvvb39LNN99Mw4cPp/b2drrmmmvo4YcfpilTplj23bdvH9XX19PgwYNp8eLF1KdPH9vzqhqmjo4OGjZsGO3YsYMGDRrkp8oAAAAAAACAImLfvn00dOhQ2rt3L1VWVjruG9qHacqUKXT88cfT7bff/uF39957L1122WX05ptv0pFHHml7bGdnJ1VWVtLDDz9Mn/70pz/8/qtf/Srt3LmTHnvssQ+/279/P33qU5+iww47jP7+979TRUWFr3Lu27ePKisrPzTnAwAAAAAAAJQmfmSD0HmYent7LZocIqI777yTpk2b5igsERF1d3dTd3d3lt1geXk59fb2fri9b98+amhooL59+9LixYt9C0sAAAAAAAAAEARfQR+uueYauvDCC2nYsGG0f/9+uv/++2nlypX0+OOPf7jP66+/Tu3t7dTW1qY9x8knn0w33HADfe5zn6NBgwbRhAkT6Ac/+AH179+fhg8fTqtWraJ77rmHbrnlFiIyhKUPPviAFi1aRPv27aN9+/YREdGRRx5J5eXlQesOAAAAAAAAAI74Epjeffdd+vKXv0xvv/02VVZW0hlnnEGPP/441dfXf7jPXXfdRUOGDKGGhgbtOV577TVL0tk//OEPdM0119CXvvQl2r17Nw0fPpyuv/56uvzyy4mI6B//+Ac9/fTTRER0wgknWM61ZcsWqqmp8VMFAAAAAAAAAPBMaB+mQgE+TAAAAAAAAACiHPswAQAAAAAAAECxAoEJAAAAAAAAAGyAwAQAAAAAAAAANkBgAgAAAAAAAAAbIDABAAAAAAAAgA0QmAAAAAAAAADABghMAAAAAAAAAGADBCYAAAAAAAAAsAECEwAAAAAAAADYAIEJAAAAAAAAAGyAwAQAAAAAAAAANkBgAgAAAAAAAAAbIDABAAAAAAAAgA0QmAAAAAAAAADABghMAAAAAAAAAGADBCYAAAAAAAAAsAECEwAAAAAAAADYAIEJAAAAAAAAAGyAwAQAAAAAAAAANkBgAgAAAAAAAAAbIDABAAAAAAAAgA0QmAAAAAAAAADABghMAAAAAAAA5ItMhmjuXKKGBn7PZPJdIqCQzncBAAAAAAAAKFnmzyeaM4dICKInnuDvmpvzWiRgBRomAAAAAAAA8sWaNSwsEfH7mjX5LQ/IAgITAAAAAAAA+WLsWKJUij+nUrwNEgVM8gAAAAAAAMgXjY38vmYNC0tyGyQGCEwAAAAAAADki3QaPksJByZ5AAAAAAAAAGADBCYAAAAAAAAAsAECEwAAAAAAAADYAIEJAAAAAAAAAGyAwAQAAAAAAAAANkBgAgAAAAAAAAAbIDABAAAAAAAAgA0QmAAAAAAAAADABghMAAAAAAAAAGADBCYAAAAAAAAAsAECEwAAAAAAAADYAIEJAAAAAAAAAGyAwAQAAAAAAAAANkBgAgAAAAAAAAAbIDABAAAAAAAAgA0QmAAAAAAAAADABghMAAAAAAAAAGADBCYAAAAAAAAAsAECEwAAAAAAAADYAIEJAAAAAACAUiCTIZo7l6ihgd8zmXyXqCBI57sAAAAAAAAAgBwwfz7RnDlEQhA98QR/19yc1yIVAtAwAQAAAAAAUAqsWcPCEhG/r1mT3/IUCNAwAQAAAAAAUKy8+irRKadkf59KEY0dm/vyFCAQmAAAAAAAAChWdMJSfT0LS42NuS9PAQKBCQAAAAAAgFJiyZJ8l6CggA8TAAAAAAAAANgAgQkAAAAAAIBi5ZVXnLeBKzDJAwAAAAAAoFg5+WQjMh4IBDRMAAAAAIiWri6iSZOIDj+c37u6cnMsAADEAAQmAAAAAETL1KlEK1YQ7d7N71OnWn/PZIjmziVqaCC69lqiESOI+vTh94YG52NffZXDIcvXq6/mrl4AgJIkJURp6Oj27dtHlZWV1NHRQYMGDcp3cQAAAIDi5fDDWeCRVFcTnXkm0YYNRKNGcTjj667TmwmVlRH19hrbgwcTvfeesZ1KZR9TGksZAECE+JEN4MMEAAAAgPBkMkTz5xOtWUM0cKBVYOrtZW0REb+vX28v5JiFJSIWsIKWQ+aZSWO5AwAIDmYQAAAAAIRn/nyiOXP0gtDBg9btri7WFOn2HT6cqLbW0Ea1tQUvxxNP8HfNzf7OAQAAJiAwAQAAAMAdN83NmjX2WqP+/a3BG849lwM6rFlDdM45RPffT7RzJ9GQIUQbNxINGGBfjldeITrlFOu2GXM5hCBqb2d/KWicAAABwYwBAAAAlCp+zNfcNDdjx/L3qtCUShFdeSVfw6w1qqgw9mltNcpxyy3O5XALkWwuRyrFJn7QOAEAQgCBCQAAAChV/JivqZqbNWusvzc2GvuNGcP7rFvnTasTpRmduRxjxxKtXu1cbgAAcAECEwAAAFCquAlBZg1UJmP4HaVSLIyYSaeDCzlu5fCDWo65c4mWLbMvNwAAuIA8TAAAAECpMnasEaZbJ0xIzc/SpRzdbsIEDsgwYgRRTw/7Jcl8SnPnslAVRzn8Ys7z1NtL1NREVF/PdZEaKAkS5QIAXICGCQAAAChVVPM1VZhQAzls3060ZQt/N28em7utXBnelM6tHH5RTfzmzCFaskS/r0yyS2Qkyl2+PNz1AQBFBQQmAAAAoFRxM6NTAygQWU3nNmyIxpQujDmfDj8mfhs2OG8DAEoemOQBAPxhNnV57jk2ywEAFCeNjaydkeZs06dbTedGjYrWlC4q/Jj4qYlxR46MxswQAFA0QMMEAPCHztQFIXoBKE5UzU8mQ1RebpjOzZpFtGBBdKZ0UeHHxK+tjc3wZMjzsWMRhhwAYAECEwDAH1FGswIARIOffEph0JnOJVGY8GPiV1Fh9VlqaMAcBwCwAJM8AIA/oo5mBQAIjzma3Zw5vA2CoZvjzKbIMNMDoOSAhgkA4I+oo1kBAMITpeY3Sm1VJkN03XVE997L29Onc4hvr+fr6rKay7W1sUYoTnRzXJSJdQEABQcEJgCAP6KOZgUACI8azc5N86sKRWZfpEzGCLMdVjiYP5+otdXYnjuXfaDsznfgAAdd2LmTaMgQomHDiNrb+TcvIb+jEPZ0cxxMkQEoaSAwAQAAAIWOm+ZX1dSMHcuaH6kxWbnSyKdkJqxwoDu2vZ0FJ51QM3Ik0dat/HnrVqJt26zHuoX8jksT5FcgBQAUFRCYAAAAgELHTfOrJmddv94+n5KZsMLB2LHsV2Wmt9deqNm50/l8aghwlbg0QTBFBqCkgcAEAAAAFCJ+zM9UzUxXFwtDUmMyapShYUqliCZO5HMFEQ7M5Ro9mn2W7ruPf5s+nWjtWnuhZsgQQ8NERDR0KNHxx1t9mJzqH5cmCKbIAJQ0EJgAAAAAJ/IReMALfszPRo0yNExEROeeSzRpknM+JbPw5Uc40+Vqe+MN4/e5c4mWLdMLNRs3Wn2YNm4kGjDA/TpLlxItXMgCWXMzC2VRa4JyFbodAJA4cKcDAAAATqjmbG6BB3KFH/MzNTmrTuhz0qD4Ec7cyuVk3jZgANGWLfblsLsOEdHmzUTz5nE5lyzxdg4/IFIeACUL8jABAAAATqjmbG6BB3KFn5xoMjnre+/xe0WFv9xCbkKQ+VyZTG5ytZnrL4kzgh0i5QFQskDDBAAAADihmrO5BR7IFU6aGi/mY340JmrwhkyGX/Kc5nMREdXV2ftA+dXU2NVFnnfhQtYuEcUvoCFSHgAlCQQmAAAAVoQg+vGPif7nf3Lro5FLH5FMhs23Fi3i7RkziGbP1l9PZ86WBHSBCGQbmoUIO6HEj8aksZGDQkjBceVKvo48p2oet20bB2vQ4VdTYydgyfrLxLJxR7BDpDwAShYITAAAAKy88QYHAfjgg/A+GmGCBRDF5yMyfz6bkElaW4nKyvTXk+Zs+caLkKdqeojshRI/GpN0mtvHfE6ZUFY9FxELa5s36/tRve7o0fZ5mYjcBSynCHZRCuGIlAdAyQKBCQAAgMGTTxJ95zvR+WhEGSwgSnTnTrpPihchT9X0ENkLQ341Jr299tvmc73xhqHd8hL0wSkvE1E4U7gohXBV+HKLLAgAKBpwZwMAAGD+9Cei//iPaH00/AhBufQR0SVUTbpPihchT9X01NYSzZypF4b8akzKy+23zeeaO9cQUnT9qF63oSF4VD03ohTCVeFr5UojdxWi5gFQ1EBgAgAAwFx0ES8Io/TR8CME5dJHpLGRqKfHat7mN2iCE3H4Y3kR8tQ2lFqQz3yG6OKLiS67LFvw8cq4cdb8SePG6ffz249uYySMKZxbsAo/qMLXhg2ImgdAiZASQtXdFyf79u2jyspK6ujooEGDBuW7OAAAUBoUarJPVUsyZ46/RXvY43XY+TB1ddkne/3734l27SI6/XSic84Jf/04+jLq85rPN3o0+1qtXMm/hekLtU8nTjQ0TFH1MQAgZ/iRDSAwAQAAACoNDVbNRH09R8fzurDXHR9HMlUiohEjiLZuNbZrarKTv+7fTzRwYLTXDSro2B0XleCkCjYjRhg+VUTB+8KrD1OhPiQAoMTwIxvgDgYAAABUdGZifvMWmX2JwpiCubFzp/325s1Ev/890Y4dHCBiyhSOfnjPPeEX80EDKlx3HQesIGKhUgZ9cDqfHyFENZ0j4j4M6xunMw3U1TeX0R4BADkBAhMAAACgovPDmTo1eN6iFSuseYuiZMgQq4ZpyBDj87Bh7Ku1eTPX48UXWQMTxWI+aECFe+/N3p4zh2j1auv5Vq829gkqrKZSRNOns9+WH9+4MFqiXEZ7BADkBAhMAAAACps4TKB02gS/eYvUMkS5cDbX+UtfYr+mN980fJjs6uEWkc4PUUc17Omx3/abZFceE3Q8qAJabS0LXl7IZbRHAEBOgMAEAACgsInKlMuNMNHfZFkaGryVw63cap29BhyIcjHvtz1knVSkIGJOjKtu+xVW1bbwkvTXjBTQBg1iE0c//l+5jPYIAMgJEJgAAAAUNk7ahyj9SfyGtzYvnDMZfzl73Mod1OwrysW8nWBiJ+iZ60SUnSNq/Hii5csNoWj8+OjK7SXprxkpoO3b5+86RPbjBMEgAChYcKcCAAAobJy0D/n0JzEvnP2awrmVO6imKExOI0lXF/tzbdhANGoURw+sqODfnAQ9c50kZqHBSSgKW24vSX8lmQwHohgxgrf37IkmwiCCQQBQsEBgAgAAUNg4LbST4k/itxxu+8dp9qXThBAZ323aZASZWLGChafly43y2Al6ahLZzZutgTCiEObs8JL0VyK1UbLt33mHg2eEBcEgAChYIDABAAAobJwW2knxJ/FbDrf902n+Tgox8+dHZ+Kl04QQWc3pzGzYYHx2EvQaG4kWLrTmRMqV0NDYyEEkzD5Mdn2gCjbr1hGde274MiRFeAcA+AYCEwAAgOIlTsHCbzn8aE+87B/GxMvJn8ZOE2KX537UKOOzm1ndzJnWpLJ+hIawiXLXrTN8ppyOUwWbqJLdJ0V4BwD4BgITAACA4iaXviO5dOwPY+Ll1CZ2mhBzxL+aGg6IIH2YJG6CXtDIejJwhsxr5acf/fa/WsYZM9yv4YU4TQ4BALECgQkAAEBxE6XviN9w30TxLZJHj7b65Ywe7f1YpzZxEmrCCoJ+hQY1sp5EltkpAIW5zH76H4INAEABAhMAAIDCxYtGx6/viNfQ2F7Cfa9ezQEEgggaajlmzSJasMDYVoWIVMrbeYmc28ROYMiHEKGLrEdklHnqVEPrpAagkOTLdwhhxAEoGnDnAgAAKFy8aHTczMDUhW1vrxElzSk0thAcxMC8EFYX5z091vL19BCVl3tbRKt1W7nSmstJhr2WrF3rvd2S7E+jmuGlUkZ7TpzI7SXLfOut1mPNASgkYeoqNVjf/CbRJZcY5fACwogDUDRAYAIAAFC4eDG3UjUmmYxV66MKSCNGBA+NrS7O29ut51q0iGjLFm+LaLVuGzZYt/fsMfb1qzkJa3YWp/ZENcOrq7MKSebrjBplaJjktkqYukoN1imncC6tri6iI4/0dqxfU0BopABILGX5LgAAAIACRgofDQ38nsnk9vpjx1qf+L/xhlEOu7LJBfnSpfx+773WhS2RcU5daOzaWmsZzAthuThfsoTfx4+3nst8DbdFtLluqRQLA+a6mgWmiRNzqyVS23D+/OjOrZrhpdNGe0oBQvYtEQegGDyYBStzAAodfser1Fj99rdExx1HdPLJ3uuh9p8cR17HZZRtCgAIBR5dAAAACE4uzI7kk/dVq1ij09FBdOaZvDiWQoLM77N5M5dHoiub+uSfyGr2NX16ttmcRBcae/Roez8lVeNk1ma5aYXUY80+TG+8Yc1nlE7nVhsRZxJWLz5H5nGXSvHn5uZs7WHYoBxSg9Xdza+6Ou/1uOoqorvvJtq5k2jIEN52KgMS2wKQXIQPbrvtNjFy5EgxcOBAMXDgQHHeeeeJtrY2IYQQW7ZsEUSkfT3wwAO259y/f7/45je/KY477jhRUVEhTjnlFPGrX/3Ksk9nZ6f4xje+IQYPHiw+8pGPiIsvvli88847foouOjo6BBGJjo4OX8cBAABwoL5eCF7e8au+PvprtLYKkUpZr0MkRF2dcznsymY+XyolRHMzf1dfz+/d3fwyf9fZaWy3tPAx8reWFuv5Wlvt66Ket7s7fJu4XTMO4ry+lzby2rdqufyO185OHmeDB/N7Z6f3etTV6cdr0LIDACLFj2zg63HUkCFD6MYbb6QTTzyRhBC0cOFCuuiii+iFF16gk08+md5++23L/r/5zW/opptuogsvvND2nFdddRUtX76cFi1aRDU1NbRkyRL6xje+QcceeyxNmzaNiIi++93v0iOPPEIPPvggVVZW0pVXXkkXX3wxPfnkk36KDwAAIGrCRiDz4rdhFynN7OCv+hZlMkTjxunLZhcEwJzcVvVrUgMuzJnDZmJEbFrlVTMQVchqL4EM4vSJiTNohJc2sht3bloav+O1oiI76p5X1AAUctuuDEkOxAFAqRNWOquurhZ33HGH9rczzzxTXHrppY7Hn3baaWLu3LmW78466yxx7bXXCiGE2Lt3r+jTp4948MEHP/z9lVdeEUQk1q1b57mc0DABAEAM+NWYqPs3N7s/VbfTMFVVGU/8u7utT/RTKdb8eC2b+nS/ttZ6rcGD7TUTSdUM+C1XVNqvXKArqzoGiLLr7FbHKNvATsPkdI1C6gMAChw/skFggSmTyYjf//73om/fvuLll1/O+v25554TRCSefPJJx/N87WtfE5/4xCfEzp07RW9vr1i+fLkYMGCAWLVqlRBCiGXLlgkiEnv27LEcN2zYMHHLLbfYnrerq0t0dHR8+NqxYwcEJgAAyDdugsmUKfbmcSNG+DfL84p6bG2ttZx1dfbCh5P5Xj4XvX7bI6mCn1dUwbquzmh7r4JIlG0QxJyv0PsAgAIiNpM8IqKNGzfS6NGjqauriwYMGEAPP/wwnXrqqVn73XnnnXTKKafQmDFjHM/385//nL7+9a/TkCFDKJ1OU1lZGf32t7+l8ePHExHRO++8Q3379qWqqirLcR/96EfpnXfesT3vDTfcQK2trX6rBwAAIE7cAi6oeYuI2DxLOsVv2WI9n2qWF9Q8UD1WDfwwaxbRjTdyRD0iNndraSFaty7b3G3u3GTk3/HbHoUeBlsXXc9rwmHdOcIGXghizofADwAkEt8z20knnUTr16+njo4Oeuihh2jmzJm0atUqi9DU2dlJ999/PzU1Nbme7+c//zk99dRTtHjxYho+fDi1t7fTN7/5TTr22GNpypQpfov3Iddccw1dJSPSENG+ffto6NChgc8HAAAgAtRF/IwZRGVl9nmLnHIgERGdcYbxOYwPiO5YdfFfVmbkUJo3z/jeLbltnIteJ6HFb3v4FbCSkphVtsEbb1i/lyHmGxu998mYMdYx5vLQN1JkKHxJEJ9AAEAs+BaY+vbtSyeccAIREZ199tn07LPP0q233kq33377h/s89NBD9MEHH9CXv/xlx3N1dnZSY2MjPfzww/TpT3+aiIjOOOMMWr9+Pd188800ZcoUOvroo+nQoUO0d+9ei5bpX//6Fx199NG25+7Xrx/169fPb/UAAADEiV2obMn55/NTed2ivbGRaNkyFqok5t+9BAuwEzB0x6r7rl6tDz6hE+zMgseYMc6hrsPgJLSk03wtczALp2v7FbDyoQ2RfdLezoE5ystZKykDchARVVdzjipziHk3YVCe949/tH6v6++4mD/fmoQ317m1AAC2hJ6xe3t76eDBg5bv7rzzTpo2bRod6ZINu7u7m7q7u6mszJo/t7y8nHp7e4mIhbI+ffrQsmXL6JJLLiEiotdee422b99Oo0ePDlt8AAAAuUQVTFTzteZm3rbLgaQ+CHv6aX/X96MVUfedONEwHzSjE+wGDSL617+IJkwgevZZNt8zX9MsyKg5lvwIVarQcuutxvnTaX/19RvBL2yExCCY62OHObmvEJyj6+WXedtOGFy4kOjrXye6+GKikSON79eti6zorqgCZ65zawEAbPF1J15zzTV04YUX0rBhw2j//v10//3308qVK+nxxx//cJ/XX3+d2tvbqc0m2/bJJ59MN9xwA33uc5+jQYMG0YQJE+gHP/gB9e/fn4YPH06rVq2ie+65h2655RYiIqqsrKTLLruMrrrqKho8eDANGjSIvvWtb9Ho0aPpvPPOC1F1AAAAeUdd8K9da4Tr1hF2ke5HK6LuW1ZmCHNjxvB3Zh8mSTpN9D//Y2z/5S/W8yxc6B62nMib8GJuDyKi3bsNrYqXZKhh/JDyEQbbLsS8JJUyks1KNm9mYdSpPVeuJLrsMtZOSa0VkX+TvDDtqZqcPvss0YEDRAMG+CsDACByfAlM7777Ln35y1+mt99+myorK+mMM86gxx9/nOrr6z/c56677qIhQ4ZQQ0OD9hyvvfYadXR0fLj9hz/8ga655hr60pe+RLt376bhw4fT9ddfT5dffvmH+/zkJz+hsrIyuuSSS+jgwYP0qU99im677Ta/dQUAAJA0/ApAbot0dcFq1tyMGUN06JCxr9v11LKNHx/MR+fMM63bmzdz8AizILNhQzDzNln/W29lYUk9XpefKpPxHwxBR1Q5pfygCoiSujouj+zz007jdpa0tzubRZ54Ipvx7dxJdPjhRO++y9/7Ncnz2p5dXURTp3K/jxpF1NbGZfrJT4j27uV99u5lbZca6AQAkHtyELUvESAPEwAAhCRImGQ3guSdcTpGDctsDgeuvmpqnOsQVU6c7u7s8Ol+wpa70dnJdZHnNh+vy09lPneYUOz5QPbJ5MlcLxmGfv9+3q6u5rYwh6DXjYOKCt5v0iQjFPykSdljxG976NpTN47scjSl09bv0+no2xAAIISIOaw4AACAEmXqVMPUacUK3vYbNlklSKAG1ZyNyD5CnVlzo7J1q7OpVlQalHSaaOZMQ/NgF7bc7MM0a5azRsTcJps2cV0kw4cbmqd0mk0JJUIQ/e53xvny4YcUBnOfSC3NrbdaNTN79hj719Zy26sBO7q6uM22bjXG9OOPEzU0GNt+2kP2x+uvW78/7zy91skcDt+8PWSItS+HDPF2fQBArEBgAgAA4A27RV7cqAvOESOcQ4+bBYBRo6wR1FRylefGS9hyp2AY6u9OwQ/27bOe+/8FUfqQLVv4+OZmexNHnS+OvO6aNUSLFhEdeaQ1wEKuMQvwdhx/PNdz7lyOsOgU5TCdZv85WcfRo7ntGhq4Db7+daKaGqKDB1kI/d73iA47jP3uMhn9OGtvJ+rbN3u8qn5Wo0bx+8aNbIa3cycLSxs3Bm0dAECEQGACAADgDbtFXty4JbtVI9TJY3Q+TCtXEq1aZewfZ8hvM361VW7BGpyCH6j9Ul6uP79TuXRaESLju6OP5s/5yLskcRPYzWNDjouf/tSqgZKsXs0BH6qqiIYNI9q+nYUdGQV46VKi1lZD+OztJbrpJvcyPvMMj0FVizdrVrYPExEHeNi0yRDabrlFPyZ1PlAVFe7lAQAEAgITAAAAb7S16Rd5caNqjXTmbE5Cj3lRr2pOenriS7564EC2tsBrxDM3Uzn19+HDWbOk65dx46xCjzzeCVVgW7iQTd5ynXfJiZEjrcJvZSVrfior2RRvwgSraWJzsyGorF9P1NnJggcRv3d1cR3NJnFmVE2dFzo7ua3UUPnptL05q1vgiAMHWLsnyx6VeSwAwBYITAAAALxRUZGfRZmbOZub+ZoZVaPS0BBMCFCFoRdeIPrZz6wJVZ97zvCr2brVX8Qzt2iAXkz8zPv29nJkPiIWON1CgKvR6MwR54iS4e80frxVYPr2t3ksSLq6uH+lgL94MWtsZNj3n/7UEDqioK6O22XtWut5161zDpWv4qZdHDkyu9y5Mo8FoESBwAQAACDZuJmz+cmtRGQVdswaHz9CwOmnE23bxp+3bmXfln37nMNQ79zp7dxE7nX2Y+KXTrNAKfMzqej8lcwC2RtvWAWmwYNZAJGhuuMyY3Tjqaecty+8kE0wiVgLM3Ik95kUrIcP15vn2TF0KIcbl2Z6EhlY4qqriKZNs/p1BREs3bSLunGUK/NYAEoUCEwAAAAKG7+R3kaONMyu9u5lv5VzzvGXfHXHDuu2Kb+gLUmNeGZnAiYFsjlz2H9HMnKkEeBAahzz4cvk1u9PP23d3r7dKljX1nL/Sy2gjooKFijNJpUNDdbcVjKwxKRJVh+/6mrWZPlN6OumXVQj6VVU5M48FoASBQITAACAwsZtgamiPqE/cMCfyRQRRz4zm0Wl0+wPpWqYqqr4/PmOeJbJEF13ndUsr6mJy+2moVPrpAoe+fJlcuv3igr2IZL07cvaISlgTZhA9MgjRBdcYAhX8vfKShZKqqoMDdzFF/N1xozRC2qqWVwqFY8gqYukh4APAMQKBCYAAADB0Jly5cM0y28Euihy3Xzve0TXX29s/+AHvGg1+zCNG5e/NlGZP9+qJZo7l8vY3OyuqVm3zrqdStlHKQxC0HHk1u/f/CYLiZKrriLq1y87gmLfvkTXXGN/XVUD19SUHcSBKFgUSXPdx4zhayxaZJhA6nzyBgzw7gsHAIiEBMziAAAAChK3aF65xM+iO4pcN3Pm8EI738KiV3RaIPmdm6ZGFahmzOBodF41em7ENY5aWoj69AkfLETVwNkFcXCLIqkbo+a6m838PvtZFvjWrMl/NEIAAAQmAAAAAfEbbCFO/Cy6o3hC71erZSYfmrmxY60LcvkdkXtd7HJbmQlTp6jHkVqWtjZ9WZyua85zZA4nLjVquvqao0i6CUdyjNrl0zriCKJPfYqv9+STfL4kC+QAFDm4+wAAAATDzZQrl4JBkoQ3N/KhmWts5P74xS9YGDj3XBZ8vJBOGwv+NWs44IM0PZPl7+01TP6WLuVtu6h8Kn6DdrjhtX3V0OlvvGFE/Zs61WpeJ5k4kX9vbTXM/ZYuJeruJpo3z7kMujGqlkHy6qv8fvLJ3N7z52fXISkmsQCUALizAAAABEPN79PTY30SnkvBIOpFd5zEJdyZtSLSJEwGA0in+SWTz7a3s5bIa3+Y+9KMLP8bb1i/v/de7wKT36AdbnhtX3mdhQvZZ2jzZqPMdnmNNmzgtvjlL63f//KXVoHJi3CUyRhCq9mHad06on//m78fNozosMP0dUiSSSwARQ4EJgAAAMFIp9mXZcsWXrTNm2cEEiDKrdYn6kV3nMQl3Jm1IitW8LY50bDaHzKPkhcNhZ3pmCy/KjD5IYx5ow6v7Ss1ZwsXGt8JQXTjjUQf/SjR7t3Zx+zezUJKebn1ezWRrK4MjY1W7dyKFfZC69y5ROvXE733Hue90tWhkLSqABQ4EJgAAAAEx2nRlkutj27RnVSTpbiEO1Urom6r/SHN5rxoKNRjJ07ktpTl7+nhRb5k+nTr8bnsCz/tO3++NSkvEYciNycjHjTImq9JCPaDM+dv+uQn3csgtXxmnLRfsr2++lV9HQpJqwpAgZOAfw4AAAAFi9OiLddaH3VR3tPDWq+kmSxFrVGRuIW1Vvtj9WrvGgo7AUDS1MTvixbxeyqVP/NM1edq3jwuz9q12WV3qvOJJxrR8MwR9VIpoiuv5GAMdhHx7PrYj/bLrX0KSasKQIEDgQkAAEBwnBZtcQkGdqiL8hEjSstkyS2stSpI9PR4z6fk1pfpNJupSfPMuXPZXDMf5plE9uG6VWFt9Ojs6IESN+E/iIYsSiGnq4vo7rs5PP6mTZxnasCA4OcDANgCgQkAAEBwci0UOaEuyon8JVhNqgmfV8xhre1QgzfU1VlN68KQFPNMtSxm1HKlUtbfq6rYZ2jGjHiE/yjOI8fpDTcYvlNbt3JuMSS0BSAWCuifAAAAAHAgbILVYog65ib0qYJEOm1NwhpGaPRjnjlrlveAE36Q5bcLQqGWa+1a6+/nnKNPSpsrvLS/XcTCnTtzVkwASg0ITAAAAKIlX5qasGZTxRB1zE3oU4Wa0aOtgksYvy8/5plmnyAv1/E6plRhoraWA1CoPkx27RGX5kuWf/VqbuOyMqLx47Pr4UVot9OeDRkST9kBABCYAAAAREy+NDVhzZ3CLJ6TYs7nJvSpQo0aKa+mJjv0uFfU9s9k7LVIfoVTr2NKFSaOP95IqKsjV4ETdFqhZcvYhPKJJ/y1i5rPqayM8zVt3BhP2QEAEJgAAABETKFqasIsnpNizucm9KlCTUODta/MobKJWKDyip8ohX6FU69jys95oxBy3c4hf7/1Vr1WaNUq/t1Pu0QVgAIA4BncYQAAAKKlUPPDhNFQJUVI9Cv0qX1VXU20Z4/xu5qg1Qk/UQrDltNuTPnNweRXyFUFpN5e1qLZncPO38iM13ZRr93WBkEJgByBOw0AAEC0FHJ+mKBah7BCYlQmfX5DTetM9KQAkEoRjRvn/dqq0Lhnj32UQr/CqduY6urKDqleUeGvvF6EXL+h61UTwYoKI7KdJJNhTZ+slzn0+/z5xlhIihYTgBIEAhMAAIBoSVKocb8EXZSGFRL9XtdOwBo5kkNMExmhpl95xV6Y0PkdOUUWzGSIrruO6N57eXv6dE5aK0OTm3Ma7dkTXdhytzE1daqRtHfFCt52C7EeRMj1G7pevcasWfwu22/oUKPcst+J9GNBvfbChTDLAyBHlOW7AAAAAEocGRygoYHfM5n8lSWoaV06zYvhTIb9VRoasjUJUV5XClhLl/L7/Pn8vRpaeudOQ5jYvdsQJpzq0djIi3Cp4TD3x/z5HERh82Z+zZ1rXLuxkaPSmUmlgreJHzZscN7WjbHGRm67+noWSHp63Mfg2LFG7qZUiuiLXySaOJFzN02cyGPAjPkaTU1GtL6ZM4lee42ob19jXyG4nRYu1I8F87WJuP3V/j9wgLVeffrw+4EDnpoPAOAMHkcAAADIL1FpV6IgjGldEC1H0OvaCVhDhhgaJrntJkyoOPWHTpCT36XTLAjIY1MpXtTL8vhtEz+MGmW0vdw2Y1cnWS+vYc51JowrV/JxK1YQnXYat4FuTK5ebewrr6FGvNu9m18S81gwX/uNN7htiaz9r9MwIpktAKGBwAQAACC/+NWuXHedESp66VIjNHYUhDGt8yuYhLmunYC1cSMvknfuZGFp40aiadOyhQknodOpP1SzO/mdXT1++lPrvn7axA6dv1JbW/Z3ZtQ63XCD1b/L6xh0ijJIxEKMHIvNzfZBH+Q1ZDlvvdUqKNXWckh0u7EwfDgLQmr/6zSMAIDQQGACAACQX/xqV6T/h3k7KoEpDG5aDieiCoIwYIChUThwwBCeKiqI+vUjOussXqQ7aZHGjLEKRWPGWK/b22v1YXJKULtyZfA2scNOk+ekuVIFva4uq/YlqGZR1RARWQUuuySz8hrm9jJr5mbMMHzJZOAHVfiS/mFjxhjmhAMGWEPD2yWzdfJFAwBkgTsDAABAfklSVL0wkcjctBxRIn2NdNHUJGbzrEyG6OijDaHCSaOi04aYrztnjncB1W+beDG3DKLJa2xkraQ5r5RZ+xJ0DEoB8mc/M8KxmwUuVaCyC4KhXr+nJ3scqsJXeTnvu3ChYZ5HRFRVxcKy1DDqkL5okrlz+XyFGqwFgJiBwAQAACC/+NWuTJ/OCzzzdlSEyadUUeHunxOl/5WTcJfJEG3fbt3fLCA4aVTWrbMep277oaKCaMkSo84LFjjX2YvAGkSTl05zRLpt24zvjjvO+nsQv7l0mjVB5txVEycaApBZEBo92gj6oCufU0JheV1zn5mFKjPnnMNt7oSTLxoAIAsITAAAAIIRZ/AFJ5qa+Gl4HBqpuJPuRplLx0m4mz/fqk0hsppnOWlUom4DP3X2IrAG1eQNG2YVmITgMexlzPoJhCEFKb9Jbs3o+kDts/b2bGHJa3+5+aIBACxAYAIAABCMfCXSjDPPU9zmgWE0WCpOgo163ooKe/MsFS9tYA68MHIk0fjxRE89pRec/dTZrk6q8LFkiX/h/OWXrdvbt/M5vYwlXR1kGzz1lLGfucx+k9ya0fWBOu7nzmWNpjxnba0Roc8NN180AIAFCEwAAACCEeXiXyVf2isvvkFhiFJ741VLRER07LFEt9xi1EVdzPf2WhPWynxCsg2uvZa1ehJz4IVVq/hFpBec/dTZrk5ehXPzuBkzhvdft47PdcYZHITCjNOYNZ/LnJdJ1sHcBkRE1dVE//M/1jr4SXJrxu6hgFlQPeMM7penn3a+R+zuJT++aACUOqJE6OjoEEQkOjo68l0UAAAoDlpbhUilhCDi99bWwjh3Pq/d2SlEXZ0Qgwfz+/79fP76en7v7o7mOt3dfL7aWq6HWpf6euN7It7PXOe6Ouv2z39uPf/gwdbjza/6en1ZZB3377e2QWene33U8qrXkJj7zvxKpYSYPVuImhp9e+hobraeY8IEaz+pbTB4sH1ZUik+n11fyzaaPJnbZMoU/Xioq7Nes67Ove3yeS8BkGD8yAbQMAEAAAhGnOZrcWqv8nntBQuM5KUrV3KOJDWZaRTmhlJTtnCh8Z25LqrWR/4u3zdssG4vXkx05ZXGudTACxKd5kTVlkya5D/Br6oxW7aMr5VOE+3YwREAiezDeAvBmphNm7K1LXYsWmTd3rGDE8ZK3IJP2JnV6dDla1q2jN/NbRckQmA+7yUAigQITAAAAIKhMxuKypQu7uALKqr5lVfTKb+oi1dVMAmzmNUFGTCHmyYy6qILYz1vnlHnkSMNMzsiay4mImvgBZ0PkxNBw4LL8i5bZgS0yGQ4+l13t1FONZgBkT7vUVjcgk/4uZZO0BOC6He/s95LfiIEuvlYAQA8A4EJAABAdEQVCCLXuZnskoLGHYVv1ChDwxR2MasLMmCmttaoi7qYz2SskQczGavApC7m02kOny0Tp+q0OnYEDQsuyys1Yuay25VzwgSivn2D9eOMGdZcRTNmWH83h5EP+6BAlwCXiBPrbtli3Et+IgTqfKyuvJLLfOutxvEVFd7LCUCJAoEJAABAdERl/hNnJDwd6hP+dNqayyYqzZkqCM6axWZ6UQiGbkEGZs60L7MuD5AZNReTWTgza3S8CMlhk9mWl7NGzFx2u3L27Zvdj/PmGeZ2M2YQzZ6tb5fZs62BMJz6JuyDAnnun/7UmtNJIu+l5mbvea1UzV0qxcdIQdirOSQAAAITAACACPFrSmeO+pXPJ95quUeP5rDNOpM1XZJYr8KUThCMSjBU6zB9unO+qgMH2Jxu507O0fTCC0Q/+5k3s0QnXyE3Idlvgt9MxtCUPPEE0fe/T/STnxg5lHbssG8Dtdzz51uTHre2slAUpC/NhH1QYB4XumS0TuHKifRjSKfJszOHzFdUSgAKBNwNAAAAosOvKZ3ZbCjuJ97qotCs3RkzhhPiyhDUvb3ec+jEnY/K62LWS5ABs4D6wQe8TUS0dSvXsaPDm1minQlZULNCVXAeO5bouuv0fj3r1xs+Sypu408nyETRl+edZ9W0HTrkPSmuJJNhwVyaUn7pS9yeckzahSu3E850mjzVTE+aQ+YrpxoABQIEJgAAANHh15QuSACAoKiLwpUrrRHq5swxzLcaGrzn0FEXsAsXRvuE3uti1ksOKXXBbGbv3uzzmc3ZzJgX72q+oyBmhargvH69XoMVNH+RZOzY7KAQTn3pVVPU3m7dXrXKmhTXSeiVvy1caA3SsWaNPkGvVy1uRUW2+d7ixRyZUTWHRCQ9AByBwAQAAMAfUZrvBAkAEBQ/EerURemMGfb+LOoifPNm62I56nI7LWbdhCsngbSiwtA4eRFMZs1igfPnPzci5QVN9quWq6vLKqDKABNh/bwaG1mLY/Zhskv460dbtnFj9ndmIcqpX+bNs5oJSlas0I8jP1pc3XV1GtxcR6UEoMCAwAQAAMAfUZrv+A0AEAY/Eer85NCR+Y5U7UBUjB5tFchGj7bf1024UgXUdNqIMnfwoLMZnmo219trBBBYtcr4HGRMqOU691zO12TX/k7mlU79lU6z35I5+p2ZoNEZdXmpZOhzeT67fpHCW1kZ0de/TnTHHUaf6MZR0HDlTsJ2rqNSAlBgQGACAADgjyjNd7wEAIgKPxHq/CxK02mOQCeFSC9P6P1o6dQw2uq2GTdNgSqgplJG+wvhbIanms3ZlTfImGhrI7rwQk4uW1FBNG6c90SvOvNKomBCfNDojG1tRMccYzVrLC83PqtayE2bWAA1Bzj59a+JvvY1Flq/+EXWhDmNI/MY+ta3iD772ex9vGqOvNQbgSFAKSNKhI6ODkFEoqOjI99FAQCAwqa1VYhUSggifm9tzXeJckN3N9e1vp7fu7u9/abDTxvW1/N+8lVba39+v+VoarKeu6nJft/Bg637lpdbt+Ur6JgI0yZq2err/V9ftt3kyULU1QkxZYq3NvRS/u5uIWpqrGWsq+PfWlp4e+pUIQ4e5O/+9jch5s51vrZ6vb/9zfjt978X4qijhFi4UIh587yPh6D1A6AA8SMbQGACAADgD7+L8lyilq2z03tZ3eoV5YJRXfA7LfBbW7OFEqdru7WBeXv4cOt5J0ywP29dnXXfQYOyy1VdbbSduRwtLUI0Nzv3g982MfdFXZ2+b/yMVfM5VeHPy3nc9lGFusGDjeNaWlgQ/upXebunx76cXtvr/ff5fedO93N5wU//AFAAQGDSAIEJAABiJClClNeFtJdj1X2jXDD6Eb66u3kxbXftzk6u5+DB/P7DH1r3HTfOvk3Ul1zE61CvU12tP16OA7vr2NXXb5t4EYx148FujKr9a25r83nKyoR49137stmhCpxm4dILap1bWqx1mz+f9/MibAUBGiZQZPiRDWB8CgAAIDxJyePiJxKe27HqvlFGEvPjZO/mI6X6FsngC5Inn7RvExWnKIWqv9mkSdmBDgYN0ideNSPbVhe4gci+TZz2J9L71Kh9ak6AS2Qdo2PHEr35JtEnPkE0bBjngZJtbT5Pby9RZyd/fu89ov/6L28+PdJ/bN069l/as4eopYXrpYuSp3LddUawiqVLiW69legXvyD6y184iuAPf8i/lZURPfcc0RlnEPXtS/Tuu0RHHaU/p5q8eONGogED9PsiMAQoZXIgwCUCaJgAACBGotS+hNFWhdUwqRqA5mbj+vnUojldWzX10r2c2qSmxtAadXY6X7u5mTUb9fXs7zRunBDpNL8mTMjWotiVpbXVXWPhplHx0rc6Mzu7MdrdLcQ//mFsV1cLMWwYv8rKrOX/yleEOOccd62ZDlUzV13tvH8mI8Tjj3Mby2OOOkqI11/X73/wILfN1Ve7l0X1q6qpSY62GICYgYYJAACAnqgiXannGT06Ou1LGG2VLhLeDTcYoZszGX6qb06yKuvf2MiR1qQWYs8efvJfXs7XDxpBzQ4/feF0bTWkdb9+HCJcMnw40aWX2kcH/Pa3iT7+caLVq4lOOYXohReIfvYz4/eeHs4VJIQ10ps52a+MvDdokLVsMky5Lrnt1KnZGj1z6PJBg4i2bTPGwYgR/rWH5vGQyRjtpBuj6TS3wz/+wVq5dJpo+3brPhUVPNbvvtv6vZv20ozMdWW3raOhgeiuu7gfjzqK++H44/X79u3rPfLkzp3Z20HuPz+aKgAKEAhMAABQSkRlOqeep7mZt72aUzkJB2HClusEi/Jyoi1b+Fzz5hnfq/VPp/VlUk3coiKqvlBDhT/wANE551gXrxUVRvv39lpN5j7+caKtW/nz1q0cHlsu4lVBxYzsG7OQuXs3UU0N0Ykn6vt561ai2loWWomsyWnHjrWaF+7ebb2Wuv/Ikda+0eWnMo8HszA2ciTRsmVs1jZqFNHixUS33ML1WbHCyIOkksnox4ifhwTnnmst97nnOu9/2WVEV19NNH06l79vX6KBA4k6OogqK71d044hQ4y+l9t295/TPTxyJAtImQyfb+RIvucAKBIgMAEAQBTs2MFJJ0ePTnZ+kqhyKKnnWbvWPn8PkT/hIEpfIbWsZuz8lMxaFCJrQtooiaovdLms1MXq3LlG+6taIjWvk1njoQoqZmTf3Hqr9ft9++zHQm2t9TxCENXXGwtw9VxmvvQlvq/kgj2TsQoeTvmpiIhuvNEQxszHrVhBNHSoNYeSHUOGWMenrNPMmXqfHjXZb1sb0WOP+UvWvH070aOPEp10EtHhh/N3r75K9LGPuZfXjY0bszVDt9yiv/+c7uGmJu6fCy5gAVrVXAFQ4CT0Hx0AAAqIe+4h+r//lxcSjz/O3+Uj4IEXohJG/J7Hj3Cgcy4PY0qoLnAlunI3NrIJn1lo6OgwPkeZvDNqwdAJJ6GxXz97s7BUimjGDN5PmjUOG8Zau/Hjuf4rVvAiWXLGGfbl0JXBLFyp5oVqWcz3VUOD9fc1a1gwtOube++1L5ebsJRKsWmj1NbJ67mNgalT2dTxS18iWriQt5cvdzeZ6+lhwWXpUr7GX//KZfjOd1jzNmAAB3cIy4ABnERXjulbbrEPvuF0D196KZd56FDeHjIkfNkASBAQmAAAICyLFkWjKcgFXoQR1cdFtyD0GzHLj3CQTvP5ZJnmz2czsrlzw/s16Xxp1GuPHm1dtJ95pvE5ymiAftvQSVhzE+SchMarriK67Tar0CB9j6SP04gRxu+bN/Pvsm/OP98qMDn1raqpUrVCZvNCIdiPTLJuHZdBlkUKLvI8vb3R9U06bTXLq662au1051VN/saPZ2HpvvuIvvAFHkdmk1Anrr/eWpc5c7ht/vUvbvNUyt480C9ex7R6D48bZ/wmBAtzv/89m2Ru3Bi+XAAkiRwEoUgEiJIHAIiNQstPEkX0sbDXdIu8pbapUx6isGVRc/js32/NN2SOHBd18k5zWZqaONKcXcQ6p3HmJ+KcLomsmmNp/35j/6oq54h3fvpmyxZrObdssf5uLocugltlpfW7igqjHlOmZJfDXO8JE6y/m8+l5miaONG6bzptH0VQYhch8LLLjH3++Ef7483oxtn11wuxZAn/3tsrxL//7e1cdsi2UaMs2vWfGi3xb3/j7zMZjswHQIGBxLUaIDABAGKj0MLwugkjXhdQcaIuGGtroxPi4kxuG6Ys6kuGeJY4CWthBTmnNnF7+e0b9X4xC6iqcFZR4X59uzqoocuJrEKRk6A8fjwLWOZQ3vJ4O5zCu19+OSeUzWSC9cd11xkJaT/4QIgVK1hoEkKIZ54JH4LfLDh6GdOPPsrXPXBAiP/4D+d2ASChIKw4AADkkqjDTceN6otAZI0+NmoUm1jJ7Th9a+xQzX+mT2e/mSiSZrolt21vt/eFiTp5p51vERFHG5s/3xhbTmaNut9UM72rriKaNs0abECata1aZW2D9evty2U2V/PSN2o5VPPKu++2Rmozo/pWqSZ9VVXGZ13fmEOXE3HI9AMH2ORy2TL2OZTta07E297OZoeDBlmj9W3YoC8nkbP/VVubP58jtS5XX20c378/J6ol4rqdcw6bRc6Zw995nYvUsTd4MJvVeRnTF1zA/fr5z7N/VTrNfZrkgDcAhCEHAlwigIYJAFCyuJngNTc7m6jFpTFz0szFqbVz0zC5aZyiLJuThknVFPltL7WeqombWSswfLi9uRqREP36WbfHjbNea/9+Pn86ze/799u3t6rRVLU4ThqmoUMNLVRVlRB79ji3b3Ozs3bK3AaqhkiaJ+r217W3NCfU1SedDjhAXFiwQIjVq1lzdeut/jSLYbSlmYwQn/+8vj0LRdMOSh5omAAAABioTt1NTdk5k8xPhe1y0MRdLiJrTqQwWjunIAi65LbmIBerV1u1LWoQj7gCP5x3Hkdc3LbN+N2sRXJqE12gjPZ2az3UUM9mbcm//mX9zRwZkCh7TDz9NGs1br2VtZFvvGEkeVXz8LhpNNUAC+k0a3ZGjeLIa+3txm/l5US7dnnXYriFGje3gaohklo4XQhwuzGwfDlrxfr391Y+GdnPKdpedzdRnz5chu9+16oZ7OzkhLZjxnBwDrecTmbMY2/0aNb8NTToy9LVxXWbOpX7pKuL6L33svtOtl/Y+wKApJEDAS4RQMMEAEgcufJ98uvfkqsgFlEHUDATpg5ux8ZZ7jBjwk1z5qRhqq521sS4vVQtmVmjopZL1WiqfkvV1UZb6AIptLR4b6Px471rmNTAF2qAB/PvanupY0ANMDFhgn0Zv/995zF67738fttt2WWW4+XHP+btd98V4p137K9lh9uYf+wxIdau5Tb4/OeNMjhpSPPh+wiAD6BhAgCAQiBKTYUTceZMymW5/BCmDm5+SnGWO4xmTa1zeblVk6jzYZJceaX3kNdeMOfh0bWnWXuxcqU+jPv8+XqfoHvvZe2VvG96erJ9qOT5167NPl7+NmaMtQ26utjHae9efu/qsoYunzrV3kdpxgzrtlNyWqn97Owk+sxnOKFuVRVrinRaJqm5k/5aq1dzAlt5XjleHnuMNUTS1+nxx4k+9Sl9eVXc7pdPfYrLfcklRIsXs78TkbVvM5n8+z4CEBMQmAAAIF/kSjCJM2dSLsvlhzB1cBNa4ix3GHR5csz1sEtOS8T7/fzn7glc7Rg3jhf2O3eysGTOw+PWnm1tRBdeyGZ+FRVs6pfJON8P5vtm0SKrACXrQ6Q3L02nuS2eeYbr+5vf8LVWrzbaSOZ7MueBcgr40NxsFZoqKrKT00pBaeFCzmVFxELT+ecTXXstb5uDfEh27eL38eON8+zezcKbTIRLxO9SQOrpyTardMLtfunpIfr//j8WlojY5NIcGMVsqpi0+wKAKMiBxisRwCQPgBKhkEJ8JzV/k1sbupku5Qu3XENxYm6TCRM4p1Kux2B3N9e7tpZfzc3Wa9sFMJB4CeGtHm83BsLm3ZIhwdVr9u9vNXfTBZGYPNm4tlNACSIhysudg26YUduvoUGIu+4S4itfyd7XrY7m13e+w7+vXGmY35np7DTyHP3nf1qPHTzY2G/vXn5/9VUh3nrLvTxm3Prr4EFrfzc1JXPuAsAHyMOkAQITACVCUoUQHYUk3JlxW3jni3z2vV3SUrtyxNX3Tm2giwJnLoed0FBVJcTGjdbF/ve+l11m87n8Jj/W+YXZ+TARcWJZ2XbXXGP9bexYf4KfU73N7N/P0QTLyow2EEKIBx9kYdMNpzY2J7d1oqtLiPPOs7/3Nm0S4rDDhLjiCm/nC4qdH19SH6YAoMGPbOAjKQAAABQAuTJzI2LTmLlz2W9g7lz/0eVkZLOxY43IZrmKUBcG1TTJyVQpl0TZ93771q4N7Moh/deWLuX3+fPtz93VxTmCDj+c351M65zaYNQo676DBrHfkiyHjqoqNk8bN47of/7H+P7HP842HTPXacUKazlWr3Zuz7FjjYh20iQsnWZTrwkTssu1ciVfZ9489mky89RT+rr4oarKiPInueUWjmDY28vbzz7L75/9LNE777if01xHIqLaWm7DlhY2Z1yyhL+XpoW6turXj32VPvEJzhOl+mB94QtEH3xA9KtfEf3iF76r7RldfxEZfl5mk0EAioEcCHCJABomAEqEuLQMPT3G0/ONG/m7xx4Lf61C0ohJwmiYcplfKUxb+j2XXw2T+oS+tta+Tfy0t1puc0S52bOzI+W5maw5vcrKrGW106D4yW01eTLvO2UKb7vlUfLyKi+3/23MGP33OtT6pVJsRieEEBs2CPHFLzprVbyO/a4ufv/hDw1NlzmvlR2/+lU8c4mu3HZ10WkxAUgoMMnTAIEJJIZCNcMqFPy2b2+vt/1ffNFYjPzkJ0K8954Qt9+uN0vxQ5whquMijNmNX0Gks5PNr/r351DOs2fb91GU95bffvHrw2Tnz6JrEz+LULUNmput7a0mqA37MpdVrZM5ienkydntqbbZ+PHcz+a2UP2TvLzUMOXDhlm3Bw2yjt1Bg7IFLF2/6Xyq5s1jk7xMRohDh4yQ22HG4p13Gp+vuIKvU1PjfpzbNXt7hVi2zH+Z/NyzSTXXBUADBCYNEJhAYihEjUIcJEVw3LzZ6I8TThDimWf0+61caSwCfvQj/m7t2tLUMAkRvP/8CiI6zU0u2ijufjG3nyoUqG0SZhGq04pEKTCZy+o0JlRho6bGm6+RF4GpvNzwLaqoYJ+mlhbWUtXVZWuYBg2y9u0552SfU/a5Gkhk9mwjqEZLC/9+5JFCLFrE9Vy9WoivfjW7vlKI8jIu6uqEuPZaIZ58kgWx733PmtcqKB98wO9SiJb1mztXiKVLOWhEb2/2cX7uWfgwgQICApMGCEwgMUSpUUiK0BGEJAkKckF17rn2+2zbZpT32mv5O7OZXtD2L9Q+DNp/fo9TtSt+FuluOB2by35xaxO3Raha1j17WCBJp7O1LWFfqvDR1GRc+9prWXBJp/n6e/ZYhY0g2i0Z7VDWp6xMiOOOM8qRTgvx9tvZ2q3aWtZMhqlrdXW2xks3XuvquFw33sh9kckI8d3vZp/Pyz1iFrSamozv583zM6L03H47vx84wOWrr2dh6Z57+PtDh4T44x/1ZUrKXA1AhEBg0gCBCSSGfPpZmIlqQZgrTUOcVFdzGU45xX4fs+leW1s85bDz40iiEBW0//yOFzcNU5h7wM+xcQpQfs+t7t/SYq2HKiT58VNSBSJVI6Wat51/vr3WqqrKWi6z8OH1ZdcWqhA5frz7ucrK7H3NvL5041yW5fDDhfj73/m7nh4h/uM//N8j6n01Zw5/n8m4H+tGa6sQ3/++EC+8wNt33mkISIcOCXHxxfoyquOts7MwH/IAoACBSQMEJpAY8ulnYSYqwS1XmoY4+elPue1+/ON4zu/VTEXn15LvtrEjyv5zuifcfJjC3APqsVJAtTMpS8p4VcviZrZWVmYv1IwZYx2bbgJDGJM++WDCz6umJjsww/nnCzF0qPW7fv3Cld0sKA4fLkSfPvrjvfT73/7Gpnnd3ULMnGkc71XDFNc4k/fZHXdYv5fCktfrLVzIfpyf+Uz+7wUAQgCBSQMEJlCUhPlzjUrDkytNQyHj1QfFLspYEgNBRNl/udISuR3rFMktSRpRXYQ9Jw1TTY3RV6qWRw0gEUQQ8iJEpVJ6LZDMaRQmWl+YVyqVHfTB7uV1nLe2CvHzn/Pnnh5ObFtb692HyS1ww9//Hv6+27SJk9H29LBJ3uDB3s8nI/b97nf5vxcACIEf2SCdj1DmACSaTIbziaxZw7klGhs5H0gSaWzkd3NZvTJ2LOf6EMKaR8MvQc+TTmfncSlWvOYtMrelJEzfxEmU/Rcmf1KYe0A9tr3dvhxBxrk6l8yaRbRgQfi5RS3L9OlE5eXGeb/9baKPf5xo506iIUOINm4kGjCAj500ifPjSD74gOjAAeP3fv2IDh70XpbKSqKrruJrq2OXiGjECCNfz44d/Nm8j8xpFHX+sepqbgchiNat0+eZ6uw08gaZSaeJRo4keuEF6/dex3tjI+dQEoLoW98i+vKXiS6+2Ftfu91X779P9OlPEz3yCOdvuvtuoldeIaqo8FY2yQknEPX0EJWVEc2YQXTMMURTpng7dsAAzqt15ZXJnZ8AiJocCHCJABom4Jkkmd7ESb59mEoJrxqmQvJhipKo77mgY9KpHF7OqZpeNjV512BFXb/9+41ACcOHc0CG+nouk2q+VlVlnGPXLuP3sjIhBg607jt0qBCVlYZW6JprjGPVHE/y3ERCfPzjQqxfL8TTT8enKdKZvcq2kpos+aqo0Jsg9ukjxJ/+xBHl1N+D9NHddxvf3XKLUb49e4JFk/vDH4zP//f/Os8nTvT2sv/S734X7NgbbsCcDwoemORpgMAEPJMk0xtQHCDUrjNRC92q4GNO3up0fi/lcNpHXWCrPjtqxL845xad8CLbQxUeiKwR2VRfuqoqI/Ld/v3Z7VtZyefs18/ePO+YY9jv5Stf8S8MqUKb+pKR8nTo/AIrKlgw1EVg7NNHiL/+lY99/33DjHDTJv359+wxhMKqKt524hvfsAqSuocobuHZFywQ4vnnOdrd177G9YfgAoBvIDBpgMAEPFMqGiYhoB1KEuiL6HDz8bG7p3WCrVtEOvO51AV4//7xaJi84OQTVFGR/V11tX37TZpkbRcv+ZPshDWnUN9qcAcivXAnX8OGubeDWpeyMn4NH24fWe+oo4xod888w0l1pbCoogo+VVX6cvzsZ8bnK6/MvqbZl0z3H2TWPldVGbnghBDissucx1N3NyfeFoKj7UURcQ+AIgA+TACEIYxPRKExfz7RnDn8l/3EE/xdMfkVdXWxj8KGDUSjRhG1tXm39e/pIbr+eh4Hf/wj+0TESbH3hcqBA+wnovOzCYvq40PEn+V7ezvR3LnZvkQXXEC0ahXvt2IFb0+aZO2XESOs5zL7OY0aZfWHOfdcookTie691yjXuHHsUyN9jUaMiKcNhgwh2ro1+/tUiuh73+Oxbaary/g8erTV5+eNN4i2bePPqr+PV2priWbOJOruJlq50vh+wgSivn0NH6/+/a3HSR+nIHR1EW3apD/ftm1GP6r861/8/oc/EH3uc0R/+xv7JA0dSrRrl9UXae9e67HqtuThh9n/6OqriX7+c/Ydu+su4/dRo4zPOp8+8/xARPSrX7G/2Xe+Q3THHVwvO9+/VIpo4EBu+//8T6IzzyzuuQWAOMiBAJcIoGECQEMxmB/6MZHyY+v/8MPGU962NiHeeSfyolsohr7wg2oyVlMT3bnVMdHc7E3To0aQ69/fn7ZKp6Fy0ljH2QZ2PkzyHhk3znrtceOMY5ua3DVSXl+Vldb7cvLk4OdSX+m0c7+7Ja6108JJBgwQYtky/rxmjRBnn52txfGqYZJj44YbhFi7lst6xRVcBtVMVxe9UWfO2doqxK238jHvvce+V05kMkKsWCHEn//svF9QzGPOTiMHQIKAhgkA4I2oIuXlEyfNjNfodDrefNN4mnvYYUQf/WjoojpSDH3hh507s7d1Wh+vOEW3zGSsUeRWr9ZrnLq7reesqHCPSNfYmK3JfPNNQ5PpFAFQ1wZRMWAA0ZYt9r9LjZFu+777rL95iWBXVsaaIiKrtqq83KrNOOUUouHDiV5/nds9DOk0X0u2tToXuGmT7bRwkqOPJtq/nz9/8pNES5aw1vGqqwxN4JYtrCXcu5eoqsq+zSsqiJYv53G2ahVr8W67jX979VXrvmYrh0wmW6sn54fGRq7zgw8S1dWxNkxHby/R//4v0emns8YzLkaONNpz61bedhqDABQSORDgEgE0TABoiMtvJpf+OE6amTAapuXLjae8ixe77x+2zknwYcplcApVu1JVFc6/x4/voVP+JfOrqYn7oamJfXz692d/FrVdnMbZCy8I8dJLPJ4OO0yIO+80flu2jH+PQ8PkhuobZNZk6DRKqibF/Orb1zjWvN8VVwjxy18K8c9/sgbEzG9+E42WydzW6lygapCGDcs+/re/tW4//rhxvpde4vfOTiFefpk/v/uuEKedxu23Y4f/dpf3+S9+wds9PUJ8+cvec7O55Uvq7RVi/nwhHnjA2M5k+JiZM4X4y1/4mnGgtreqAQQgYSDogwYITADkkFwGznC6VhgBoKfHEGCkw3TQchQKYQRMv6jmO6r5lF+TRD8mjapwOmmS9djqauuidMIE6+8TJljPZzaX+vznhWhv11/XHGJaCF7MCiHEkCG5N2FShSKn4ApERihxPy9dZLl33hHiscf0gQ+8vNSQ6B/5iPdjTz9d/70dO3eysDF1KodT379fiLfe4oh8p53Gx9rNKW4PQAYPNgJB9PRwtDvdseZ70uu8IgWiQ4eEmD3bff+oiNPEFIAYgMCkAQIT8EwSnvQXOrn0x0lKfxVDnVU/CXPkrrgJK3C6HR/G103n22TGfPx//7e/cueLa6+11qlvX2cBqrzcv3DT2MjajhkzhPjEJ9gnaMoUFhDtjvnkJ7O/Gz/eOepf2JcdUvD40584f5QQLIQIwZqmkSPtHyq0tlqvUVFhDTkux8yvfsXb27dbj1U1oF5C4s+dy9q8zk4u+8035/Yehg8TKDAgMGmAwAQ8UwyagnxTKG0ow+v+85/hBQ8134uXRU4U14qyfXOpYVKJ26TRqc3UQASTJ1uPVfMpVVRYz2/WZH7pS0IcPOiv7PlANTVUNTdhAj3YvWS76/If1dUJsWWLu6YrzOuww4Q48UTvApMagnvXLg59/uyzvP3oo9ZgGWbUByhE1oAQcswcfjgnkJXaRt2xXh6+zJ0rxH33GeWW71/5Ch78AWADBCYNEJiAZ6LSFCRF85EPgtQ9H+0l/Ulefz284KGa0cQpMMalzSrmBLtObeYmgKpR44iS+xDAD6qAHNVLpw2qrmaBobw8Xm2Rk7C0fLkQ//qXYU5HJMQrr7i3UybDZpYjR/IxlZVC3Hsva3H27tUfo2qY3IQzM/fd53/++Nvf2FTw0CEhLrpIiLvu4u+7u9lMtBjGKwAR40c2KMtXsAkA8k4mwxGLGhr4XUaCGjvWyN0SJlqZjNi0dCm/z58fRamTjWzTqVN5u62NI2R5iXaWj/Z66il+HzSIlzN2eUy8kE5zXZcs4c9C8Pdhz6sjqjGqIiN5vfcev3vNWVUIOLVZYyOPufp6fldzrzU3cx4hM059aje3OPGXv3jfNyr8RI0kMu7jqiqOIKejrIzomGOyv+/t5UhyPT3x1lH2sUrfvnyfH3UUj+1TT+X56eSTs/fNZIiuu47oued4e+9eovXruc5NTZzHaPZsjm5XWam/XmNj9v1TVeWtDv/1X0SLFtmPR0lXF9GUKUQPPUT0mc9wRL9LLiFavJjnz9/9jvvs/vs5l1auxxcAxUQOBLhEAA0TyMLuqXJUmo5CyasTtL6648KYiuWjvX7yE37v6opWExS3SWKpai/D1Dtsm6lapqYm+3399P9vfsO+PUHHShitoBrMYtAg6/bAgdZts/nZ/v3Z+5tfqolf2FcUpnrV1UI89xyX/7XXhPjqV/Vj4cYbDZ8l6avkFsCgt5f918z9sGePETWwqsrqwxQFkycLcccd/PnQIQ4cYc49Vl4uxMKF/PvWrUJ89rPxapriri8AEQOTPA0QmEAWcS/QC8WPJ2g5dceFadN8tJd5oXTddfaLaOkT8NJL3hbbpSrQRIGTAOA2RqI0KVT7cPx469hWI+WZ8XMfzJtnjdKn7us2lsL4namBH9Rktmqghz59DN+miopgkfPcXrrw7maBKazgdOSRQmzYwPXfvFmIU0+1hnoXQohXX+V3KSwReQuRvWePEGed5a8fwswVDz3Egt/bbwsxbZo1wIM87xFHCHHbbRxU4uBBZ0E/LF6T+AKQECAwaYDABLKAFoAJKuTojgvTplG0l9M51AhOjY3Wuv7oR0K0tHBELyGE+OAD4xz33MPfvfhisoXfXBKXv5OTAOA2VsMID+rYaW62jmU1Up55cWp+sl5RYQ2v7HW8nHyyUWbzuHW7p8JENqyttR4bZaAHp7xNbsJSnIEfamqEuPhiIdasEeIf/xBi6VLWDL3+OreJjIxnFpbkcU6sXSvEk09yYIhPfMJ7P4T9Hzp4UIhPf9p+vLe28px3//28bQ5iEfV/lK69AUgwEJg0QGACWfj9sygUAcgvUWqYctlGfk0C1Rwh8iXnhBNOMBacL7/MpjvpNJ/jG98QYsUKIf76V39CZRx1TAqqcFJTE005nQSA5mbrb83N3o91Qx07qjChRsqbONE41k44qK11bw8ZHe2LX9SP2ziFRLWOYQWVqipDgN6zxz64Qz6CPphDXctIfQ88wOa4773H2rW9ezkoxK5dQtx6KwuQZWVCDB/uHiJ76lQOKiEE172uztu9EEYr39vLWkKnhxZyDvnUp1hDbo7GF/VDQ2iYQIHhRzbw4IkNQJEinfS9IoMSCEH0xBP8nZ/jk4p0KF6zhh3h7RyMvRyna9NMhttuzRqiMWO4/datsx4TBF1/rFnD20T8bnbM37lTf57t24lOOokdwomI9u1jh3AiooED+RwXXUQ0cSI7f0cZZMGMuZ1k2yR5zKkBA7Zu5ZeunLq62fX7qFFEK1ZYtyWqQ7+67XSsG+rYkecXgt9HjiRqbzf2N4+BvXv15xw+3L2/UinuY9lu6rgdO5Z/k+VQx15bGwdZ2bCB67t4MTv327W1uS+GDiXavNn4rbfXeu6ysuzvzPTtS3T++ca129qsgQ7sAgzkOvDAmDFEn/qU0RZy7vrDH4jGjeNgDk88wfXZtYvv9S98gaiz0/s1/vQnoosvNtrkT3/igAxEzmPArX+d6Ooiuu8+nrO2bHFu195eoocfJjrlFOO+6ey0ny+DsGUL0YgRfD9UVfE2AMVCDgS4RAANEwhNoQRx8EKczvNOpk3mV9gnmn5NAu00TC+9xL+bn9S//75xjLmOPT3xaXqi9gmLG6eQ1Go5/TzJVk39pEagvj5bI6Jex81M0I9/VEuLdRyruZrM17bTMHl9wu6kOfNyr5rr5WYOaK4nUbbmzPwaPz67blILVVHBmhi1jNdcE49vk/l1+OHWbdVcUr5qatyTGS9YIMT69UJs2sTmap/5DO+v5uLyyrRpbO4nBGuuLr/ceX8/c7E0pzt0iE3x1DlNZzaojut584zftm3jRMK6cQdACQCTPA0QmEBoCiWIgxPyz9m88PRbF7d2cDNtikoA8GsSaPZhMi8C167l3++/nxfJU6bwQkcIIX7969yZwUXtE+aEuZ2amjiAgRdfpLffNsypysuFOP98b4v0qIKBhBW4nczXwiS+NfswmV/l5fZlMV9PDSihOua7CYJ+hFe1L3T3ZzptXMfJzFGWy05gifpVVsZlS6e9mQ+qpn92gvzgwUK88AJ/9+abQnzsY86mjao/pNlcr7WVowc++SRv79ih73O/D1527eIHOT09LJTW1WXXTxeYQnfvdXcL8cwzLHS9/LIxflpavJcHgCIAApMGCEwgNHEHJYjiWD+LvqALWLfFr25BFoeGKaq23LQpeBlUwgRCyIVPmE5gVl8TJthf026BFkbYcEM3noK2h5uPk1M9vPSFlyf+Ert7kYi1Pubzu/kpqfVyusd0mjSngBZO144r8a3da9gw/ff9+3P0O/V7Ow1TdzdrU8z1PvxwI3re4sVCzJxp33d2/SzPW1srxBlnROMz1NkpxLJl/FkGpNi/n32mgmiYWlv51bcvJ7d9910OeDFxYrI02ADkAAhMGiAwgUTQ0mL9g/PzRM/Ln63bPuriM8gC1q+GyWza1NLCC4qogxjoFrP5CJgQZZS2uM3+7F79+9v3r27/uOsWpZZN1z/mspl/D3ItJ82DitkUSvcyX9tN0PMTgEPti87O7IW3edw6PQSwE9ScXum0vRngYYf5P1///kI88QQLJ0cdZdWW7tql74/WVv25jjhCiD/8gfdxWivYPThQz/uZzxgC07//zSHMzb97EVCksHTwIEf3e+wx3n7xRdY4uY033b0n/wf69hXi3ns55Pj77wvxne8kK7AMADEDgUkDBCbgi7gWr+qT/dpa78d6MWty20ddMHuJ4qXi14cpF3/Adk9Rc21CGSZKmxecFq9e2l0nMKsvdTFrHkNeTICiJspolrr2cxIio3zirpZLTRqrvqZMMY51E8Sd/L6kUGTXJmr9a2q8a0Z1GqaxY919mNQkwGFew4bxgl8IITZu5G3Zt3btprsPRozghzn/8R8cKc8JO82O7rw33ijE889z1M3t2w2hyTwnuQnaBw9y0lki9h175BGr5sov5j7v10+Itjb+/sABzgnmVTue5CieAHgAApMGCEzAF3EttsMITFFomIr1D04nKOYjYEIYDZOKrq8mTrSe3xza2u/4ML+GDzcW201N9ucx+zCl07ydFIL659kJkVEL2Wr/jBhhvZ6aA8mrlkfH7NnWc40fb9+nYe6Tzs5sAXvyZGPc2oUPD5rvacAA/ffHH2/4Cj3wAGuKiNiXyLyfTBOgBtmQc7EULm++mTU5N9ygnyPtBByd5qq+ngVI6dP0zjtCnHKKdf5VBbDjjzeudeiQISyFnVMk5rmltpaFpsce44S927YJMWaMt+vk46EUABECgUkDBKYCJh+L/LgW2255ZJyIwoepWEmKhinKZK668qu+Jv37G/t7GbNyfEyZwuWTi1u/vjpJxE4YdLt31Xauq4vHtNPNt08NGqFGafNTDlWIcQp+EPY+aWy0nnvcOHezz6hfqRTnUfv73zmS3IYNhtCke02cyEJlba21rWT/m9ujsdG7mWV3t96ss6qKr/P887yfzNck+9RctvJyIf74R+OcBw/GkyBaIvu/okKIP/+Zv9u3T4iGBvdjkxzFEwAPQGDSAIGpgMnHwjeuaxZC4IhCJC4fJhlGvL5eiP/932DlCLKPEPrFiLoQrq429i/1p71B/fPchNyo2lU9T0uLfdAEL76BTuVQBet02v7YsPeJqh3xqj2qrRVi9OhoBKbWVr4XTjyRo9wJIcSDD2aHH1ePESJ73KhmtWp9nAJ5dHayMNa/P5dn9mxuTxlFsbpaiIcfZnO6ffuyQ9WXlxs+VL29LPx57ZvOTk6w7bUP1YcnVVWGP5gQbJ7nRqnPOaDggcCkAQJTAZOPp1hJFizC/EmV4h+cuS+bm3mhau5XmdvkmWey+/qZZ4z2uusu92tFYTbptJ/O1ErWZf/+eJ9EJwnd/alqmJz88/wEeohq/nFyvifiMNnjx3Oo9v792cfJ3Id+yqGabo4f7zyfhZnvVO1VWZl13NoJULKddb9JkzcvwtLq1Xyezk7e/tjHhHj8cdbMrF/vHJiiqopDdKsaRvO2Lny5XRt5Ncl95x1+f+op1oypwtLBg0L8/vfe54pt2zjoxbZtQnz8496CCannbmri8h53nBD/+If78UIk+38SAA9AYNIAgamAKcVFvhNhFnBJNKHwG0TCyYFdh52plhxLcpHy5JPZ4+tPfzL2v/ZaXoA5EUVgDqd2URf6Tgu9QrpP/C68dHOCn3PYjQldf6jXmj07uGC6axf71Zx6qhBf/CIv7O+/n3MAffAB79Perl9w+5kHdVozp8AQuih7XuulCjaVldaHErt2GeaGFRUsEFZVGSZuAwdaj+/bl33qvAhLqvDywgv83UknCfHWW8Z3Tsl5Kyut40Z98KAri137ew368vnPC/Hooyw47djBQp40wzt4kKPr+fHDHDmSx5IQPH4+8xn3fkvifwEAOQYCkwYITAVMLp5i6RYYSX16ViwaJq9O+jofEz91cIoMV18vxPe/z4ukl17KXji89ppxLS9tFaWGyQ03U6JCWgD5bRO3xZ7bvesn0IN6Ll3gDZ1AP22aEL/9raHBFILHU3e3veDd2ck5gOS5zSaXfucjdU5To/KZcxTpXl6DC+zfn+1/JdtQlqG6mq83aZI+wa/68pKU1q7P9uzh708+mYOStLdzhLrqavtr22kqzT5M6jGDB2f3g1cNU2srh0B/6SXefv99fpfCks4Pk8jQmqpCnRQ8f/97NqXbvdu936L8L0jqfyUALkBg0gCBCTii+6NLknBhJhc+TEH205m7OWH3lF9d/IYVDNw0TL/5De+3fXt2P/f2GvWTT3CdyGVgjrCCpFdysRjyE7BCpxEZP54FF7mAnD3buS10bee1fqq2oqJC3w87d9qf47HHhFi3js08zQKVGkXTyV/GDbWNdCHhnQQRPyHxVV+c6mpuS7fQ6Xavvn397a+OFykYmTVNzz/vrGmS48RuLOrmEXVs2fnD2WnJR48WYu9eFoB6e4W47DIjkp9Zo6w+VFIFP6kFGzSIx5WOsJr6vXs5oEecfn4A5JjYBKbbbrtNjBw5UgwcOFAMHDhQnHfeeaLt/8Xv37JliyAi7euBBx6wL4DNMQsWLPhwn9dee01MmzZNHH744WLgwIHi/PPPF8tllBmPQGDyQJQLo0ILTKAzpSgVkwU3fxCvfjZOCwkdXp30wwoGbkKdHF8HDhTG01G7SHd+F0BeycViKIhmzsnHRV1QjhgRLhKgeSHsJnjIueSJJ9jk6oUXjPNccIEQxxxj3d9c10mTrL9NmhS8TdU5TS2nWcOkW4TX1HgfQ7rgFalUdvCJKF41Ne7jRWqZiDiEt8yrtGiRtZ5qm1RUsEZJd245ZoJocu3K29Njfd+yhYUfFSctuRxzcjzfeKNxPi9l8MJLL7Hp4Pr1QpxxRrbmrFT+K0HREZvAtHjxYvHII4+If/7zn+K1114TjY2Nok+fPuKll14SmUxGvP3225ZXa2urGDBggNjvEIZTPeauu+4SqVRKvPHGGx/uc+KJJ4qpU6eKDRs2iH/+85/iG9/4hjjssMPE2z5ygEBg8kCUC6NCMxvLt4YpH9HznEzivP4Bupm7OWFnbhK1D1MUdHdz1C0heFGTT6Eq1/dHLhZDXsaum6bR/LJz1A+KXTQ7Is5hoxPo5ffm6+7alf2AIcoQ305lHj+eNT4ygtu11/IDBLPvjiqEmjVvTvfdlCn6trHT6Jh9mDZt4oAH8rcf/MC+T2VYby/jxZwz7NRTOeS4EEI8+yz7LdXU6PMxVVVZ20U9tzpvyaAWVVUsqOlQx+4FFxi/HTwoxIwZbK4phJFE1uma6suL+WSY+3j4cKP9du3i5MR25YOGCRQQOTXJq66uFnfccYf2tzPPPFNceumlvs530UUXiUmmp2q7du0SRCTa29s//G7fvn2CiMTSpUs9nxcCkweiXBgVWmCCfPswRfGH4/ccTiZxudAw5aJ9dcJWSwsLZ7W1vDDyct3WViGmTuXPzz6b3wVBru+PpCyGnDSN6ktnbhamnZyEM7nw9irQt7QYx/btK8Qvf2n81tPDWql77w1/T+jmNKe+1CWhNd/PTppdO3M1GXnN7MPU2sraCqcEyHZ9apcHaccO675Dh7JAaC7TaacJ8e67vP9DD7HQZKcBcxrj5jlFjQBYVaU/xtw+ffoYvktCGD5gxx7LQklvr/6act5S+8gtQEdvL1/DPG/4vY/r6ri9nn6at1XBED5MoEDJicCUyWTE73//e9G3b1/x8ssvZ/3+3HPPCSIST8rs1h545513RDqdFvfdd9+H3/X29oqTTjpJfPWrXxUHDhwQ3d3d4qabbhJHHXWU2O3g2NjV1SU6Ojo+fO3YsQMCkxulrGGKgjB/GlEsgv2ew8kkLhc+TG7ni+KPV7fI9rM4ktTXc3QvIfhJcD5NTnJ9fyRlMeSkaZw92+rDNH58sH62Qx035oWyl0AR5jZrbxfiL3/h5Kpm/6VcoGqCpkwxfnPSohE5m6LZmYnKeqvtYdYoEfG2GRntzk5AVdFpFHXhzE8/ncOQ793Li//KSv01vN7fumN1SIHnhBNYWBNCiEOHWLvkFa8aeZW33hLi1VeFeOUV9ulyO043dqXwXVPD5xGCTZi/+lUISKCgiVVgevHFF8VHPvIRUV5eLiorK8Ujjzyi3e+KK64Qp5xyiq9z/+hHPxLV1dWiU3lasmPHDnH22WeLVColysvLxTHHHCP+4ZInoKWlReh8oyAwOVAqPkxxnT/fQmJYDZPXP2AzcQs4YYUBL2ZcXn0QzjiDP7/9dn6F+KQIMF6Js7zmc7e0GJqepiYWmqT5WVNTtNoa1ddIHUOtrUIcdhgHd9i2TX9OmQjZwWQ9dDlVzYNTFDcnn6ewQUXU+9qroCGEXluojiMnQU99jRzJZmVCcB6kQYPshWu3sav6fd10k3095s2zhg7/9Ke9RyIUIvhDtYsvFmLVKv781ltCfOUrzvt7mYNlcuC//Y01d4XyUBMAhVgFpoMHD4pNmzaJ5557Tlx99dXiiCOOyNIwffDBB6KyslLcfPPNvs590kkniSuvvNLyXW9vr5g2bZq48MILxZo1a8Tzzz8vrrjiCnHccceJt2T0Gw3QMCkkbZGlK0+uyhjXE/owWqJ8+jD50Q6p12hpiVfACavJiUrD1N0txE9/yp8PHcr//RM1Ycef0/FxasTCmIT6Qa1fc7NzneQ4/ve/s8/1zDNCXHklC3THHBNtOd3CWqvR7CZPtj92wgR7jZ5ujDiNAbegBepr3TpD8LNLfNvcbJzfaxjy4cO5bGPHct88+aQQa9ZwSO6Kiuyyu43dPXsMoamqSoiuLuO3jg4hfv1r41wrV/J7VxcLS/IBjleC3ketrUIccQRrNIUQYt8+5/29zMEXX8xmo0JwQI2vfc17PQBIEDn1YZo8ebL4+te/bvnunnvuEX369BHvSnthD7S3twsiEuuV/BRPPPGEKCsry6rMCSecIG644QbP5y95H6akmbnpyqM64Jr/EKMkLh+QpLWxHVFFxUulssMgRy3ghG3DqHyY/OD2lD+JhG13p+Pj9LlyCzoS1UMYVTCbONE5MID0U/rsZzl0tPm/yq1MYcaPW+JUp34KO26dzu1Fw+T00glNtbXG+VUfJvVY1f9p9mzWGMvoeU8+KcSAAdn1DjJ2X3mFhbFRo7iu8+YZv5mFJZ1A60TQsSyP+/zn2T/ODS9zQWsrj5PnnuPtAwe81wOABJFTgamurk7MnDnT8t2ECRPEJZdc4us8M2fOFGeffXbW94sXLxZlZWVZkfY+9rGPieuvv97z+UteYEpa2E9dedTFt/kPMUriEmxyZXoU9ty6+geNildbG6+AU4iaHK/JK4VITn3Dzg9Ox7vdb2HawE3DFNW9rhPMJk60F7zDPPyZM4dNCM891/+i2m3seWnroP2htlE6bQQHUM+5bp0/gWnw4Oz/h7Iyfa4ju0TY5jJcfjnv9/GPC/Hee/z7nXey0FRRYQhWQcZPfT0HnZBtIDVLvb1C3HMPm4j278/jJ4kPU/yMkc99zjDPA6AAiU1guvrqq8WqVavEli1bxIsvviiuvvpqkUqlxJIlSz7cZ9OmTSKVSolHH31Ue46TTjpJ/PnPf84q8GGHHSZ+9atfZe2/a9cucfjhh4uLL75YrF+/Xrz22mvi+9//vujTp0+WNsqJkheYkqb90JUnVwJTPhapYa8ZZf/pFrdBNUzNzflZ8AcJSpGr8rk95TeTlPsyTg2TWx+EuXZ3d7aQYPbFU8d6XV0wLUprq/uiPmqt2uzZ7uNHJQrtZhjTL7VN7KLGqbi1bV2dNbqgTihUhWfVJ1P+/tnPcrCNbdtY63TWWUYo71WrhPjIR4zAEkHmD3md8nLDZ6mrS4gPPvDWFgCAnBGbwHTppZeK4cOHi759+4ojjzxSTJ482SIsCSHENddcI4YOHSp6dInThBBEJO6++27Ld7fffrvo37+/2Lt3r/aYZ599VjQ0NIjBgwdnJcz1SskLTEl5ku1UHvUPsaUlv2WMkrAL0ig1hLqyJFkA0RFUwMuFQOJHw5QUzW+cPkxuhPX9czILVftfl2fI63Xcosjprjt4sBBXXMHBBbzy8stC3HWXYbrlR8MUBUH7o7vbXqCRAtyOHYZ5XUWFEXzBHBVvwACrD5Oa5kGXKNip3PI4+SDjox81Ir29/TZHv/zEJwxt2O9+xwE7gs5v3d1shvfggxwRUZrh6aL7RUFYIXnPHiGmTy+MeR+AiMmpSV6hUPICUyHgNikX8qQddmEc5cI/6nbMR78ENSHMhUDiZwGTFA1TPvHbBubx5hbEQx2bfrR/KuZ+VQUvIiGuuSb7uoq5uu/reFkA5zNSpXptNeKcGoxB3a6o8F8+uwcSdg+CdGPk2GMNYe3NN7k/zz2Xzee6uoRYtswQmsLQ2WnMQel0uHPZ4ecBjcquXUJs384CqgyIoQPzFChSIDBpSIzAVMiL/lxh10aFPGmHLXtYh984oxHmo1+SrGHyA+YD/w9KzBHq1FdtrXMbhvHxUU2+1FxClZXZ55o7lwMKPPlkfDmXoh7jTm2g/tbYaG2Dvn2dtXC6l1/sBEq7YDbq9QYP5u9//GMhNm3iYzdtEuKUU4Q47zyObieEEE88IcSpp3rXunR2smZJ5llSAzzEpWHy+xDAXO7zzuMogUII8cYbQnzxi/pjkqIJByBiIDBpSIzAlPQFXFDiDkogRGFP2vlaGOvaMuoxmI9+KTQTwqAUevmjQB2vqgmefHkZy+pie/9+a/s6hcn3Ehq7t5f3/eEPrcJZnHN91Pef2kZ79ug1a6mUfchvry+/GiY/wpzOh43I8LscPFiIIUNYUBCCzQV//GOOarhvH4d///vfhbALLqWOyylThHjgAf7tiSc4wENNTXaEPr+4zQHTpvnTMKmm78cdZwiOMgCGW12LZd0CSh4ITBoSIzDla3HZ3GxEdGppiX7hFeWEatdGmLT9o2vLqMdgUvqlGIWLXGoPkopbZMa6uuiCqfjxh1KFhaoqwzfmW9/KXqir91l3txA33ijEt78txF//KoSN36/vOoQdI6oWTk3Oan55zX9kJyxJs7go6ur2cEgKE2ahmEiIYcOE2LKFz9Hby6Z5551n5NBatUqIqVOzx5d5XKbTQvzlL/y91CxF9d/u1r+ZDAey8GrCqY7x6mrWLElhaccOTkbrpr0DoAjwIxukCeSWsWOJnniCp6pUirfjZv58orlzje3WVqKyMqLm5uiusWYN14mI39esCX4uuzZqbDSuNXassQ3ssWvLKMdgUvpl/nyiOXO4Xk88wd9FOcbzQZT3FVFhtpE6hmfM4PnLPN7SDn9lmQzXW7e/2r5EfA3dvaGO8298g+jEE4n27iWqqiLasoXo0UeJTj6Z6JRTrGU45hii6dOt33V2En3mM0SnnaYvtxBEf/4z0e23O9fTy/3n1AYqGzZYt/fu1e+XShENG0a0davx3dixRE89xddzQra1X5zuB/W3hQuJXn7Z+E3We+pU6/UPHCBavJjoW9/iOi1fTvTXvxJ98Yvc/uPHE736KtF3vsP7y/tFjsvycqJ77yU66SSigweJLrmEqK2N77MocJsDysu5/G7IMfD229bvq6uJ7ruPP7/9NtGRR/J+l19O1L8/UUUF0Y4dyZ8nAIibHAhwiSAxGqYkOMjHodmK8iknnmZFRy58mJJCIZts2hHVfaVGCiukNnIbr25BEvxoJcKGyZcpM1asMLRfjY32+3d0sNP9448bx3opt4rOn8bO78vtXG4appoa47z79wsxfjxrWNJp/tzUZL2WTrtkxs4E8PTT2Sfo4EFvbdLUlH0d+Xt3N/eDqhXUtYU0q9ywgYN2rFwpxKFDbJ539NHWeXTePNZAyePuvTf6eTWqOUDVtsmXOUfYqFFcTyGEePVVrq/UBgJQhMAkT0NiBKZ8oHN8jdpsqlgX4cVKMfZXUkwDoySqftItloqljdwCOTgJ0n7b10uAiu3b2ZfF7Xy//a0RVU7XF34eAKhjv67Ou6mhSmcnJ1Xt35/Nta6+mrd1Pk11dSwkmc89YYK1jQYOtP4+cKD1em4Cmrk/u7tZMJLJXydMMEKODx9u/2BQ9x9YUeHeRy+8IMQFFwjx/vu8fffdQvTrF8194zUaYlRzgDqeZPAL8/nq6rgdt27l7Vde4TDspfNsHZQYEJg0lLTAFKcPUzEuvAsVu76wix4F4aJ08LJYCksUSVOD4BYlzO9Yd6pHUK1PQ4MQkye735dO5W5qsg9YoQpEapuofl9ubeBUT1XAUfMiDRpkCD1VVewfZN6W+Y4kalnVl9qfEydaf584US8QmR8M6qws3MJ8d3Xx+/LlQlx4oRAvvsg+V3/9qxCf+YzzsV4IEw48CF7Grhz7NTWc2FcIIRYvZiEKgCIEApOGkhWYogxHraMYF975Jmif2fWF7vtiMl8LEzFPfjdjBu8jzXFyVaZckYv7NNcLQK/X9WvSN2GC/fmCan3MWr1ly7yVTf1NLVdNjd7ESqdhamnxNx6d6qkKOKrApG5XVTlfyy0hsNqf/ftbf+/fXy8Qych0dXXZx8jfnfjWt4wQ48uWceCHDz7g7Xfe4feDB60mg34IkxMsCH7mpF27hDj5ZDYVPXAg//MXADEBgUlDyQpMQRdKXo8rpoV3UgjaZ3Z9ofu+UAXdMNoy3X7yu+pqNr/ZsSOaciatfXMhwKkLwOrq3AiNYTVbbhoT80LWT7/ahSGfOzfY+aqrredR80DV1tr7MIWNHuikYZowQYjzz3cWepzK8fbb2W1uHkNNTdbj1HZIp60CohSG5LhQhUkiju43frx7UunRow2h6fnnhfjv/+aodPv2sQbqwgv5WkHGdtwPGLZu5eh5SXhgA0BCQZQ8YBA0ypbX4/IR9S8qDhwgGjmSaOdOoiFDiDZuJBowIN+lCt5ndn2h+z4pke38oovy5rW97PYTgmj/fqIzz4yunFFHtwtLOh1/lKtRo4hWrDC2KytzE5GvooIjmwVFjQqnMmqU8dnPfWO+78xs2WJ89jNOKiuJ9uwxtgcOJOroMO7r6dM5Ypo8x6xZxjXmzye66iqiadO4vqNGcSS3igr9tZzq2dbGkebM56muti83EdHSpfZj4JRT7KPq7dlDdN111vH7zW/yd5JMhsddXR3vN2YMt8m0aRyxz0x5Oe/f20vU3s71sBs7ss7NzUQ/+hHRWWfxeJbn+PzniZYs4X3mz/c/tnXtGBVdXUR9+hD94hdEn/iEUQ8AQGAgMBU7QQUar8cV6sKbiIUlGRJ361beNi9m8kXQPrPrC/ne3s4LhdWr+Q/eLRxzEtEtML22l1OI9UyG6P33iT7ykWjKWcgPEoKiLgBTKeP+ikJojOsBhyrojRnDi2LdQtaP4NnYyPfbj37EC1jJ9u3Way1dat22o7bWGsL74x8nmjjRuAd6e60C6sqV/JLbd99tHL9ihbOw4FRPnYBqrp96HikM2Y0BXdhyp+N++EOiRYusbSGPWbKEU2jIdnDDSVjWtcHRR3Po8C99yRCWiPT1cgvlHlbQd+IHPyC6+Waifv2IXnuN6Gtfi+c6AJQQBbZaAp4wT9RjxhA1NRGtW+dPoPEqCOXiyXVc7NzpvJ0vggqhdn0hvzcvJJYt498Kre/CaMuc9luzhhecUVHIDxKCoi4A587lhXlUQmNcDzh0T/rtNC9+SKc5X5QqTIwfb3xWF/VOi/wJE6ztOXGi9f5taLA+TNiwwbqtzm9umjUvdHVx2+mor+c+l3OO3RioqrIKTVVVRN/9rv64TMY6DiTmfcwPVYhY+5VKcd9mMvzASDJypPe6yvnhtdesAjaRvl5Bc55F8WDgyCNZE/fb33L9f/c75/395OkCoFTJgYlgIigpH6ak+U8klZoaf07AhU4x+JtF4YuTj4AMYQJTFCpeQnCbf3fzu9EFF0g66j1XW2utl5970m9UPTXwgzrfufnMeBmLTgEbzD6GTufYsyc7ip75uJYWjvJaX6+/XlmZNfqr0/+fmqupqcm5Dcx0dRnhxR99VIgpU5zHbtD5Nor/JdkOP/mJED09/N377wvxuc95GztYM4ASAUEfNJSUwKT7ky6GBVjU7N/Pf0bptBFRyYlCXaxL8KfI5KMdwgSmKFbcFvhq3QvxAYca7loGIzD/HlfCb3URLyPG2QXHUINnqAlodWVTA33IiHVeAjyk07zthi7aoO4ly+g0x4Z5aHT11Rzc4sAB3pYJXtUyqgFl/PatnwcDXv9PZPTP1auN/FNmiuFhGgABgMCkoaQEJrs/mGJfgEVJXLmL8rkgLibtRRjysTjwes1Ce9ixaxcvwIj4fdcu78fqckM5tZHbAw6/D0ByQXe3s2YnSfekqr1Ro9HpxqzfSG9qZL/ycvdy2UUblGPOroxRz+Hy2EmThFi7VohDh+zLWF1tzZPlp2/V8VJV5V2raFefn/3MyKv0979ziPQg5wGgyECUvFLH7D/xxhtEmzfzthD5j9YVF1HbYIeJxuZEPqOnFbK/WZTkIyBDkMAURHzvbt4cb5S5MAwdavjodHXxdment2PVNhk1yghSoGujAQOcfZbyGcRF9RsVwvAb3bfPuq/Zdyid5rlKHpvLYCzqnKn6NHV1cT/I/hgzhv3SzHOs30hvPT3Z2w0NznO2XbRBIg5qcPCgfszo5nDVt3DWrOw62bW9+djNm4nOO8/4bdw4a/COPXs4Sl+QoA4bNxo+TAMGcCREuyiDXv9P9uwhmjmT6JFHiD79aaITTrCvW6n4XALglxwIcImgpDRMZgrtyVHQnCpR1zOu3EVJ7o8kPe2Ok0LxYaqtTb6ZjO6pv1e8+DD56at8+jg5afVVjcH48dY5bvZsf3OCnX+P37GszkVqOSdMsLZ9c3P4ucvNnM6MWWNYVcXlKSvL1lCFMb9T22DePP91EkKIDRuc83fZ4Ta+3erg9f9EXucHP7BqxgAocWCSp6FkBaZCWwQHTeYXtZmV7o8oiT5MUZ4vycJcPujuFuKVV/jz3/6W+3unEPpDNYmqqAh3PnU8q076zc32x+bTx8nJbKyuziogjR/v3/TNTFQm12qZ1XKqD6uimGN/8AP7dpIJaOV1df3pZq5mHj9uPnFqndJpIf70J/5e+vy48dnPGgLInXcK0a+fv/8ut3vc7fdC+38HIGFAYNJQsgJToaH6MXh5SidE9IvLuP6Ioj5vlPUuVsffoG3e2irE737Hn2fNyr3AEuVYCaq5dSOID5NTvdTxrAoTtbX2582nD5ObEGOuc//+2YKCH6HHSTjzc8+2tmYLH05t5neu0fWzKtDYCZhC6DWGqtZJbTe1H+rqnO8fuX86LcTNNwuxaRNHw/vhD721IRFHnnvuOY5C9+ijQnzkI97vMbc5N8gckERfPgASCgQmDRCYCoSgGqZcP2kLswiP23QwKPnWaDiZGrmFnHYiaL3q64W4/noh3nxTiDlzCluADHpfxYFTf6jjWRUunASmfOJmJmcnUMnXxInex3ZUGqbubqvQodPK7dhhmMGVlQlx1VXByumkHbEzZXPTGOoCpEyZkn0uNxPYefOE+POfebutTYiGBu8P6uR1xo41oudt2uTtWCHimXMLMZokAHkCApMGCEwFQlxPwqMmzCI8Si1OlH+4+TbvcFoIejGvsSNom7e2CnHddfz55z9PpkmcGaf+C6q5jQOn/lDH84QJ1n1bWqzn8pvLKV+odVZ9cfwIglH5MAnh7vellrOszPu53XJQSVRhXprm7drlrClRNWTyQYA6h3idL7q6hLjgAn8PFMzXGT/eEJq8EsecW4j5ygDIExCYNEBgKjDyvXh3I8wiPFemg0lvQxUnUyO3kNNOBG3z7m4hlizhz+vX+2u/7m72v6muZi3JhAnBhH8/fehUz7AapigX6U7l9CsAqecKI1j7JUzf+DE1DHttJ3TaCPNDK9296BWdQKPrD3k9daFfUcHjzEk7pAZGGTGCv1M1k27zRSbDZnhuD+rUdlfrN2GCt+PinIv9hCUHoMSBwKQBAlOBkW/zMDfCLMJz9ceZ9DZUiUvDlA/B0e7pd5DzeK23kxAfVnPr1wwsV4K8Wy4nO62GF9zK6adv1PZvbLSW0ymYhY7m5nDHS3T+Lna+RX41TDqBxklwsRPQnNrVzdQxzNznJY+T1/rlci528/MCAHwI8jCBwief+Yq8EDRvRS5zISW9DVXMbarmspk1i2jBgsLJE6Jr6xdeIBoxgvOrDBnC+VYGDHA/j1MfdnUZeXAGDTK+V3PSVFQEywmjK4cZu3Gly4Ejx32U94Aul9OKFcbvmzdzWYJcz6kORNl9095un9NnwQIjx9TKlUTjxxO1tnrPB6TmTFq0yFrWRYv4fH4x57aS11i9Wr9vWRnRtm3ez51Oc+4f2YZuOc/UvpPceiu/63Ik2eUclNTWchnM80UmQ/TSS0THHEN0+OFcrvLy7Oua+3/pUqKFC/l7c58TWXNV2dXv6af9zcVh8gqa+7ShwcgPVQj/AQAkmRwIcImg6DVMXp7aFpKJVqFpR5II2pDJRzvoNEzmkMPS/Cls2VVtQE1NPPe3Xw2TqvmZPDmeuUdnwhdV/iq/OXCctKBu7dHS4i+8tBqsIYpgGHZ97KYZjUqb2NmZbU5mfk2Y4G72qB6j6/sXX+T3LVuE+NSn7OcDJxNh2Q/Nzd7q949/CNG3r/c5KKo5C/8BADgCkzwNRS8weZkYC2nyLCThLqmgDZm4wqX39Bjtu2wZf9fWZizc1Xw76mLUizO2Wx/mKpiDXx+mfPoW5WqxqfaNGqHNKZiF2h6qkDdlivVa6hhWBaaJE+3L1tzMfeY2D+gEhPHj3c03g7S3nYlodzeXtbY226eJyPnc3d3WBwh2Zbn6aiH27GFhyWk+sBMga2v9z6m9vUL87/9yUAkvx0U1Z+E/AABHYJJXLPhRy3sxvyokE61cmq4VK2hDRjXbcjIL8sPbbxsmO729bOazdi3RAw/w7/36Wffv149N6CRDhrhfw60PVTOmUaM8F5+IvM8x6TT/Zt63rc1+PlJNVlevjm/uUeswa5b12kHNN93MbtW+mTPHMN0jYrNSu3Op7bFnj/XcPT3WbXUMV1cT7d1r/J5KWU36enqI5s3j/aVJFpHetNB8DfO+RGyqVlGRva8kk2FTNb99O3WqMW5XrODt5cu5Tj/6kfU+MaOeW+37tjZ3093+/dk0du9e5/lAHrtwoWHql0qxiZ/feTWVIjrlFKJHH/W2f1RzFv4DAIiOHAhwiaAgNUx+ntwVm4YJREspP2mMq+7f/769uY68lvl+u/baYAklnQI2RBnMIYo5Jo5joz53XAmBhw+3jgE1EIOatNVc5hEjsk32nMrc0mLd32zKptNYedFWdHdnR5ez01ju2ZOt5fKiBZLYaUZlEmS7V1mZ9d7xqwVUk+d66f98zJ1Jnq8zGePzypXJKhsAPoFJnoaCFJj8qOWLzYcJRAuEZStR3Atufj1R3W9xJp31M8eEMRPy2xZ+BEFduZyup94LTn4obuVwiiinRuhTx0tdnXHN5ubs+9PNN8jt2n58zuzqYzfW7IQlp6iE5vqovkryOnbn1IUcdzOD1PV1qc97UfD++8bn3/wGbQoKGpjkFQt+1PJeVO/mfcJE4QHByVe7F5I5ZlQ4tbVbBDQvOEX1k9eKwhxmwwbn7TD4mWPCmAn5bQs7ky2v5XLqX/VeWLSIo4rp9tWVY8kSY1w99ZR9HdQIfWqkwXSaz0XEY7W83DpW3SIN2s0bqRTRjBkc1W7NGqLRo/kc993Hv/f08PV0x7e1GVEXR43ibR1mc0DzdWfOtC+XuT5ERDU1RPv2EZ1xBpfx+OONiHOSigqOftenj/VcXV18rokTnaPUleK8FzeHHWZ8/uhHiR58MH9lASCX5ECASwQFqWGKUyOEJ2/5IV/tnu/+jmIs+z2HU53jCgQRB340THGaG+XSlMlPMAvddSZNsh4/aZKxvzounKLq6crhpNlRTcqmTLGa4an96NQmQaL0eckZRcQanqBmnELoNUxBNIGybHZtuWsX72MXPc8t+mIu5r2wZrGFxrvvGp+few5rB1DQwCRPQ0EKTHFSSAvGYiJf7R5m8RrFseZFadCFi9/Fj1Nb51uA9IOfBVk+/XnClsVMWDNEdYFtDuGu8weyK6cubLu6aK+uNvpm9mzruSZMsO5r9nMK6zPmp++cQmR7bVtzQtRhw4QYNEh/Lruw4naREnVlUwWhPXv42mVl/uaRuM3Qu7vtzQuLmd5eft+zB6b9oKCBwKQBApNC0haM3d1CNDXx4qN/f15oFOOTuqS1uxfUp9O1td4XH3Z+PkEERb/CplNbF7I/n1PZo2yjsIR5OBD2qX11dbZQY4dTe6rl0GmXzMEd1HOpwRzUoApTpwYrl9/97bQ4bm1jRieE6oQd8xjS+W1NnszvUvvW3KzXLunOGVXOp6iQ5R8yxChrXKH9AQCRA4FJAwQmhaQtGHV/6MX4pC5fmp4w6BZFXhfXYY5VSZL2JJ84tUNYLVyUCWbDCmNhhKYwGiq/gkdLi/25VHO/6mrW0Dz8sBCvvca5vIKWRcWpvd9+W//gQgo+XlADL6TT+vaQgnFnZ7bgqoseKfN6jRhhtE+QByz5eBi1eDG/v/aakZi2GP+3AChSIDBpgMCUcHQLazyps5IE/6cwixi/2ikVt8Xjs89ay/fss/6vUQg4aW78RstUE31GmWA2rMAaRugJI2y5aSadfJ5U1PDfTU18PrMfSGenEC+/LMQ//mEN2exWFhWnceEUrtvs3+WETsPklCxWp42T40FXTrt5RtVaBal/nPT0CDF9utEmUVlGFOsDHwASBKLkFTv//jfR0KEcKaiigmjHDqIjjsh3qcKhS5roNwlnVOiiqxHlP6pgviI+2SVw9BIlTZf8M2i7uUVaa24m+va3iX72M94+5xyjvYoJp2h1XqLRmaOVpVJEdXV8XNQJZsNGCQwTHbCiwj6qnhtO91k6zZHgzO3ndB/Mnm1Eq5PjP5Mhuv56TnT85ptEzz5r7N/cTNTa6q0sKk7jwi4RbCpFNGGC/TnNbNxINHIk0c6dnHR540Yj0p9uvlT7q39/Tiq8cmV2udW6mqmq8pZ82E8Ux6iilQpB9Ne/Ev3rX9xvUf4vRBHJEwAQHTkQ4BJBUWmY1KeFFRX5LlF4kuTDpHuqmwTfo3yXoRCeeH7wgfUpdTESth8KJRhGnPmnnAgbbCFs7iY/ZfFaLvU/I52O/j5Wr68GvKir0/s0dXby96rmTk1S63bN2bP5mv378//I7Nn2dQsyzvfs4fP+6le8LQMfxAUCMwEQO9AwFTvq00K7p4eFhHwanU4bT/3ylRfK7qluPrQ7ZnTamlwSVV6hOOnfn3O2HDqU75LER9h+cHoS73eMhX1S73S815xAQXC6rlsbqO2fyRDNnWvsv3w50apV/JuaQyqTcc7dpNLYSDRsGNGLL7prWpzGxY4dwawSurqy+6CiwqiLuQ17eojmzTM0IlK7Zj522jSrFmnbNqLTTjM010REtbWsxfMylsxaGLOFQmcn0XXXcW4rVcMn/2P8zue1tXy9yy8n6u0l+sY3iH79a/fjghIm7xkAIHpyIMAlAmiY8ojXJ+JJebqdVA0TcObQIX6XT/CL1YcpLFFqCsPeF0nwywsbQEQ9lxoJz+yL6RStjsg5gETc6DRjTlo+td5efLuc/JTcNCm6PnAKly41drp+DjLupGbJ7LPkRNj7rBA0+gAUOAj6oKGoBKZduwyhyZzcLw6imLS9/jklxQRBV2f8eYFSIUx+n9paf/dGvu55v9EBneYw9VxqZDizkKHuW1XFpshRzSvmXEnSnM1rf+qEI6cEwrq+d5vnzWUx51SSL6f/B1XYrKoSorHRWQCzE+KCzudmYamqynlfPGQDIPHAJK/YOeIINjmwIyqHVqJoHE+9mj8kxQTBzrQl6eZoANihzgmzZhEtWKCfI/zc82qwls2b+Xi7/VUTr7D3fNC5Tr1uTw9RSwv/tnQpm1zNmWPs7zSHqee68kr+XWdKqO773e9GO6+MHEm0dSt/3rqVt7/yFW/9qQuyMWoUmxVKzIF41LrMmJFt/qZinltTqezf58yxNztU/zf27iW6/34+Zs0aotGjuSz33ce/T5/O79JM0Dy+gpi1CsFmeIsWsXnkli3O++crSA8AIB5yIMAlgqLSMLkR5ZOtKJ4Aey0PtDgABMPt3lHvQafw4X7ueb9htlUtxoQJ4e75oHOd2l5qHfwEX/ATyl1N2hpkjtNpkSS6XEle+1OnYXIKYBF2vq6stF5v0CDnYBk6c8Z0OnhbOSHr9re/8XaQAA/QMAGQeGCSp6GkBKYozVyimPQhCAEQ733gdp+qc4JqauUnUp66iG5q8j5HOJl4BSGquc5NYHLrO78Ca5jFsy4fktNvXq8dJneVV8ztdM01htBUVSXE+ednC9PmYyZPzvbfdUu6GzTSYmsrJ9LdvZvN8P7853B1xf8eAIkEJnmlTpSmbVFEZiuE6GoAxE2ceVXczH/UOWHUKM6Ho5sj3O75qVMNM60VKwzzNS9zhJOJlxdUE7zRo6OZ66ZP50h35m0zbnOYW99GaZ61c6f9ti5Xkoxq59Y/mQybme3bx++ZTPAy2p2/ocHo/yee4DaT7XTYYdb9n3mG381tS8TmcAcOEB13HI+9Pn2Mug4YYD1H0Fxea9ZwG0yZQnTSSZz78HOfc6+fah6K/z0AioccCHCJoKQ0THiyBUDyiDPAgd/cQTL3TZA5IoyWKKwWQ61nS0s0c53TnOllPnXr2zAapkyG359+Wohf/1qIK6/kepeXe9OyCME5hKqqDG3Onj3Z+zhprqJAZ1Jnbic1WEZ1NX9v17ZeyhvUBDRIf8EED4CCAxqmUgcaHQCSR5xBTYLkDgpKGC1RRYWRkygIqqZm7VqiJUuCn0/iNGd60Qy69W0YTf1bb3EOpXPOITr3XOP7Bx7g4D8bN1r312k6RozgIAlE/D5iBNGePdbjnDRXUaDTqpnb6corOUCDZORI1kiZx6q5bb2UV83lNWaMc3APSZD+8qtFjDI4EwAgdnB3AgBALogz8bDfhyRhzAPdEsrGuRD0K3RGURYvC2G/AqsfzAlnd+8mevttTvb6v/+r31/Xt1JYkqjbRGzWJiPsye0oUSMq1tVZ28mcuDyTsZqM1tXxb+a2Vct73HHWBMKNjdkC+vHHW8t07716gSlIf/kdm3Ga6AIAIgcCEwAA5IIkaX7D+NTotERmwcS82I16IehX6Ay7KM1k7DUcbsJYVIJjWxvRzTcTvfwy0bvvEtXWEs2caX8+Xd9WVVmFpKqq7ON0/k9Rous7c/nN90dDg7UO6XS2JlEt75e+lF8BxO/YRNhxAAoKCEwAAFAKqEKNJApNjeqYL1EXgmGFCL9CZ9hF6fz5VvPDiRONhbCbMBaVBqGhgei554i2bWOBafNmQyuiO59O0/HAA4ZZnl0OoQEDiDZtMvrnllui1Q766Tsv2poBA6z1UIUsXV+7BfcIg9+xmZS8gwAAT0BgAgCAUsC8gLczczJjTjI7aJBh/uQWBc6MuhDMtRlS2EWpuuhOpw0Bwk0YU39fvTrbZMyLMCIX4mvWsLBkdz2JWdMxZgwn5f2P/yD6+Mc5sez48dnR5CRJMRMLYr7qpa+bmojKy+Mxi/VLnCa6AIDIgcAEAACFQhgNjbqAX7+eF5aHDvF5165lJ/jycqJx49jsbtUq3n/3buM8usX6Jz9p9U8ZP56oX7/shWCuzZDCLkqdFuFuC3T1956ecMKI+XxEhrmg7H91bLS16TV/0pxSd+0w/ROl71oQ81Uvfe12XvNDAumfJ8Oyh8HuvEkx0QUAuAKBCQAACgU/GgC5gF2+nOipp4gOHrT+LqOkrVplCEaSZcvsF4o64UBdWJeV6aPX5doMKazfmNMi3G2Brv7e3h5OWGxsZN8wcw6s+fON+unGhk7z53TtMP0zd64R5W7pUh5/ZvM3J6IQVKLwEVRzjE2dGi6qY9znBQDkDAhMAABQKKgagFWriCZNMhaaf/4z0cUX8/bAgez3EgQheMHa2Wl8V1NDdOKJeuHgxRedtyWFZobktAh3W6Crv197LQuiknPO8V8WVWPT3m6Y+b3xRrZApmqliJwFoTD984tfZG97FZiSIlAETXSbr/MCAHIGBCYAACgU1AXwypVsRkfEC82aGqKODt42m9H5JZXivDhr1nh76u81N1OSIgXqiDMk+v33Z29ff332fjJP0t693N7nnks0eTKXRdUAyTxCqhZJCkVS4Fm1iv2fOjqIzjyTaNYsfRm99o+unbq6rPuo205EJVCE7T91HJ9xRrbfGZH/a4TJXQYASAQQmAAAoFBobCS64QZjMSqFJYkUlrxQU0O0bx+HZh4/PtuHyc9i0y03U6EQZ9ADr4lhzUlmu7pYi7R6NW+rGqDVq63CUm0t5xoyL+Sbm3nRv2IF77tyJdGCBUa9dEIGkfeoiLKdjjrKqtE86ijvbXP66VxP83YQ5s0ztFpLl7LfWGur9+PVcXz++dn1JPI/RoLcH3H5UwEAAgGBCQAAwhKnZsJMOu385D6dtoYM11FZSfTtbxuJQs2Y6zF/vvd66HIzFSJxBqXwmhhWl1RWlkXVAM2dy2Z+UuM0c6b/YA464YfIWSjQna+21iow1dbq66dDNR21MyV1u88WLbLuv2iRP4FJHcd2ocr9jpEg90dSzBQBAEQEgQkAAMKTy3DMAwYQHTig/+0HP+AADxs2GJqjp56yT6yqmhslJax0vogzKIXXxLBqklki+7J49TlyqpedMOUkFNidTyYsTqU4Z5UOndDz5pvWfdRtSVLC0ucicAn8ngBIFBCYAACFRa60OX7IZbjs99/P/q6+3n9buEVVy0XY76QRJOiB1/GoJlq1Y8sWex8mFa8+R071CiIUOJ3Pre10486r9s1tfM6YYdUozZihP48T5v4cM4aDdUj/s95eoquvNsoSZ+AS+D0BkCggMAEACoskakFyGS5blyBWF8LbDd3iM9dhv5OGmwCiE46iHo9VVUbIdy94Edic6mUWfj75SV6kv/gi0fDhLLhNnJgtFGQyrE3asIE/z5rlPa+Qbtx51b65jc/ZszmkfRhhRu3PiRNZiBWCNbJlZbmZb4rFLxCAIgECEwCgsEiiFiTOcNnqglgllQp2Xt3iM656xK0V9Ht+cyS6qipeEFdVuV8njFYurjbwIrB5vfaiRYamZ/dubiOdcBDGv0Y37nTaN12Z5XhcvZoDOsiw6rI+UURhVPtzw4b8zDfF4hcIQLEgSoSOjg5BRKKjoyPfRQEAhKG1VYhUSggifm9tzXeJ4kWt77Bh/Fm+xo0Ldt7ubj53fT2/d3dHW24zcfeZ3/NXVVnbsKrK23Xq663Hybbzcu042qC7W4ja2uwy+bm2+Tf1NXiw/rqDB3vbz67MXsad1zJHPZ7Uc9fVldZ8A0AJ4Uc2gIYJAFBYFFry07CoT7x15laZjH9tRTptmJT5jYrnl7i1gn7PrwZV0EWm0xFEKyc1JbfeGn0bzJ/P+ZXUMqo4tY/5NxU7v5kw/jVetUBeyxymLZ20WPK7WbM4DHupzDcAAC0QmAAAhUXSk59GjbpInz6dTZLkgnXlSl70BWmTXPmDxe0b5ff8aiQ6L+Z4RHrhyG48ysX4woXZQk1UbaAKCrW1+gW9U/uoyZBlfi4nv5nFi60+R4sXh6uHTnDxWuYwbWk3/tX+LKX5BgCgBQITAAAkGd0ifepU4/cwfjO58geLWyvo9/zmSHTSh8kLfoT1+fOJfvtbTn5qFphSKW7rn/yE82F5FdZ0qILDzJl6DaFT+zhpVBYs0Gsdb7mFcyUJwe+33BJOqDALLkuX8kMAKax5KXPQ8ZREf0g/JDFiKABFCu6sQgMTJADJJup7VLdI9/qE3U2DFORJvZ/6qfu2tcWX0NfPgt1vJDo3dG3y2mssTHR3E/3xj8a+coEuA0+EKYdXwcGpfXTJcN20jlELGqpZ4IoVLKx5LXNQ1PGfyXCy2kL5b01ixFAAipSEzwYgC0yQACSbXNyjXhfKbgvbIE/q/dSvVOYrXT1PO40X/u+9R9SnD9HQodmmeV59p+yIwzzVizAUtYnl2LGsWVLLETfm8Z/JGGauhTJWC11DBkABAYGp0MAECUB8RKEdysU96nWh7LawDbLgdqufuQ3feKM05itdm7S1Ge0wezaPpSOPDOY7FQVex7YXYShqE8vGRjbDMweSyEUOMPP4b2gwvi+UsZrvvGk9PUTl5fx59Wqi0aOTr5UDICAY2YVGvidIAIqZKDQi6j06ejSbOeXDjDYO3yG3OcjchmaKZb7yG6DAzMaNnBC2t5cToNolaI0Dr2N71iwjKe2oUbytErVmK53m5Mtqu+aSQvxvzXfE0N/9juiyy/jzG2+wwJt0rRwAAYHAVGjke4IEoJiJQjuk3qO9vfkzS4vDZMttDlL9UWpriY4/vnjmK53goWsTNZDB3Xfz595e3re3l2jcOO8BJ4JgFu5ef906tlet4t/nzeOEtUREM2bwbytXGu9OvkRRku/ol37+W5PiS6xrs1yW7YEHiL70JSNpcCFo5QAICASmQiPffyoAFDNRPGVW79GGhvhyxpgXQrlaKLnNQbrIbcU0Z+mEal2bqILj1q3Z59q5M3g5ZH+3t7PwVV7OApi53+20fUTsTzV/Pms/Ja2tLOCWghmlit8IiEn1zXvjDaLJkznU+5w5/F1cZTv/fB576TTR4YcXhlYOgIBAYAIAAEk+TNi8Mm+esbhdupT9B1pbjd+Tsogrdi241/7UBTIoKzM0TEScw8gOswA8Zgxfb906vQZLsmwZv8t+d0pK29FhLwzJ0Ofm+qkC+VVXEU2bZpjutbURVVTY16eYiDNxbtiHHCedxK+hQ4mefz5egbexkairiz+PGkVUXx/ftQDIN6JE6OjoEEQkOjo68l0UAEAh090tRGurEPX1QqxdK0RPj/f9W1t5Owi1tULw8oxftbXW3+vrrb/X1we7TiETVVtHcY3ubiFqaqx9Mm4cf5dO8/v+/fbXaW0VIpWyHk/E38nrq7+p/W53DiIhBg0SYvbs7O9bWvT1M58rlcquW11d+PaKu+/CIsuo3ostLfbld6qX2qatreHL+Le/CXHxxUIcc0x05wSgSPEjG0DDBAAAfvjDH4wn+5MnE9XUEB1zjP3+uTKjLUSn9ajJhZZN159dXZxMWNW2vPKK/nsv2GmHpEbD3N8Std/N2r5Vq4gOHTJ+27ePv29uJrr3Xo7eV13N+9x3H9H27awhu/NOopdfztaqqOaEGzbo6+G1T5KiIXXCzsRRCPvyO9UrjoiaF1xA9I9/EO3fT3T55cWn4QUgT0BgAgAkh6Q4Uztx8KCxyBkzxllYipIZM6wmeDNmWH8vdlM4L+Qr7cLUqUZI7BUreHv5chaOli8Pdk6dSR+RIRTJ/tX5MOkSBvfpk32uF1/k8paX86J+zx6iG26w7rN9O9HIkURf+YpVIB8yxOqXNWqUvh5e+8Trfk5zxM6d1iiE27Y5mz36xU6IXbfOKLdafqd6xfGQI99+zoUwhwMQAIxiAEByKISnzCedZPh4dHTk7rqzZ/Mi0E4gyvdCKQnkS8umalfstC1+0OUmqq3lIBpyEdrcbF2gSnT3UVVVdqJcKeQ4+ToRsSCiCuQ6HyYdfny+zBqzTMZ4mbV0Y8cSXXedEX2wtZVo2DBryHYifh8+nH39osJNq6erp1P9i/EhRyHM4QAEAAITAKWEnelQUiiExMxjxvCCYM0aXpDlCghE7uRrATpqlFWwsdO2+MEuN5H6tF63QNXdR5s2sbbl4EH+Xmqe5GdVEDAzZIh+/HnRnkmN1y9+wfPP8uWc20mdd1QBccUKrpv63fr11nL29rKma+RIa0AN+VtUZDJ8vhEjeHvoUG6T8eON4Ad3383C5ZAhLFDKehHpx2Qx3tO6sZfJsJB77738/fTpRE1N0DyBggKjFYBSws50KCkUgh9OWVnxLXKKhXwtQNvash9ERIGX+ugWqLr76LbbDB+mVIojmkmhxbyoP/dcXthu387fDRtG9MIL3pMvv/MOCxOZDO+zYwcft2cP/75qlX7ekbl81Lqp2rquLkPDa2bnzuwohGVl2eUL+tBIhmC3C5c/bZphorh1K28vX56bMZkkMzjd2Js/32pOPHcum4FiHgUFBAQmAEqJOEyHoiRKDUGSFhGgMAg6ZsL4KoVFt0DV3UdTp1oFqzlz2F+pt5eou5u/Ky8neuYZDggh2b6d/eUeecSbmZUUloj4fehQokGDrPvYzTu6umQyVu3duecSTZrEZZchrYlYq7N6dbYPk0rQh0Zu2u98zq1JMoOzG3sqSbQeAMABrB5A4YOFsXfiMB2KEvVpbCbj/cm2SpIWEaAwKMQx09jIAsK993K577qL6Kc/JTrjDN6+9Vauy4svWo8TwipwELG/j84v7+9/tx7ntNiVwpJ52+u8o1tsz5ql1whddRWb4UkTuI0biQYMcPdZCirYuGm/zziDzQfN2+p/06xZRAsWRP9flSRTZp1GTRfAJInWAwA4gFUlKHwKcZGTL+IyHXIjqFAbpm+TtIgAhUGSxozXeyadZm3Kli1WM7VVq4zPq1eHL48uma2OdNoqNKXT3ucd3WI7ndZrgAYM4Dr7JehDo6uu0vsoScaOtQpM0hTNPH+tXMmvqP+rvJgy5/PBolmoJ2IfpmIIcAFKCghMoPBJ0iIn6diZDql/proIWGGCQwQVfML0bSH4Q4FkkYsx49WHxs89I++Tqiqiww/n9+efj7bcMtCJm6nsjh3ZPkz5NFns6WFTw6efJnr8caLFi71F91Ox81GSPP20dX+5bZ6/NmyI57/KiylzPh8sptN87TlzcnM9AGIAAhMofLAwDo/6Z3r33cbiIIrgEEEFnzB9W4whe0G8RDFm3J7ke/Wh8XPPyPtkwwYO0tDby9d0ChWuo7ycNTf79lmPPfHEbFM7Ig5TPmIEv1dVscbn6KPZJyoOgmhJHnqI6D//0/DbIgo2l7mZ8tnNVebvRo0yNExR/lcFDQ4SBV1dRH37spZz2TKi889PVuRVACICAhMofLAwDo/6Z7pzp/X3sA7MQQWfMH2bTvP+coE1f753M5RMhhePqRTRj39M9J3vwC+uVPG7SHd7ku/Vh8bPPSPvi0OHiPbvJ9q9m83GUimiAweITjuNgzfogiAQcaCE6dM54MPYsUTHH8/bkk2biObN48/mOklhicgQnmQ0vDgIoiVZu5bbYs+ecIKCmymfzmRPCg5OPky5Iq4Hi1OnEj38MAvaffsmL/IqAFEhSoSOjg5BRKKjoyPfRYmW7m4hWluFqK/n9+7ufJcIFCKtrUKkUkIQ8XtNDX+Wr7q6cOc3j9OmJiEmTBBi8GA+b2cnv+rqrN85nUM31nW/q/VqbfXeHo89JsSKFUJ87GPej0syuZwrwl4rX/Oabrz4HUP19dZ7p77e+ntdnbd7y08byPvniCOs965aXvW+JtLXUd1Hfck66X6LE7e21XHbbfz+7397nwN0bb9/P7dfOs3v+/dbj/Har2HwMybUfffvd59jgzB4sBDvvCNEb68Q69fzNgAFgh/ZAAJToRN0QQiAmbj/XM3n1wljXhYbbmNd93uQBZYQvN+2bfz57LO9H5dkcjlXmK8l+9OP8JOveU03XvyOIbeyOz0cCCooqvePXXnTaf3vah2dXuY6VVVZf6uq8lbeoAQZF7INe3qEmDs3+Phzu/bgwda2iENw8FN/dd+6unjuqbo6If75T/68ZUs8giIAMeFHNoCNSaGDgAcgCsxZ6jdtYnOSJUsMU6QFC8JFVTKb0qjoTJJ037mNda8JPL0wdqyRi6aysjj84nI5V5ivRWSYMnk1o8rXvObFD8VtLLiZkToFQAjqmG9n1qeWd8gQwzdRoquj7j5taiJ66ilrnbZsMczyKiuJrriCfVjWrjWOe+UVvq4uBLhf1LadNcs97YDcLivjOnjBbvw5jUmv0ffCRKvzc1+o+8YVcKKtjej11/lzVRUH2ejqgh8TKD5yIMAlAmiYcgxMBXOPrs29fqdqfWpqoh1bTk+w49QwBR2H3d1CbN/On//wB+O43l5+/+//9m4mFbUJTFDyqWHyq+XL17ymM7vK1VzW3S1EbW12W3m5vnr/1NTo95f1KysToqJCiMZG/ZywaFF2v40ebWioKiqE2LXLWganPtfNL1EQ1zgJomHq7GRT4/79haiuZtNjXV+FKXMSNUxCCNHezu+ZjP38DUACgUmehqIVmJIqmCRVkCtmvP7J675TTXXS6eDmbG5lkwumXPgwRY1cJI4b5z6uJ060tt/EidGXxw/58mEKslDL17ymCh7ptBB79uTm2q2t2YKGVx8qu/tH145eBXmd+Z75VVFh3d/poYhufomCKOcoM14fNKl46aswZQ7jw9TZGd899dvfGp8HDYIfEygYYJJXSngJJ5oPYCqYe/yYkajfqaY6Q4ZEG1VJZ6akmqG4RVZKwlj/97+JjjiCaNAg93Ftl5clX+Sy/czX0pkg+Tk+l6imbZlM/JHfJOpYqq3ltpo61X0utTPz05n4rVzpLay5Loy4ma4u67Z5vlDRzS9RoF4zkzHyP5nH3e9+R3TssWwudv313pIB68ZfFKakYZLM+rkvdPvGdU+VlRmfjzySQ9sDUGRAYALxgNxIuceP/4X63Z//nO1joIbEDRMCNxcL4FwkZuzbl98HDXIf1xUVRJ2d1u1ixrzIGzOG+2HdOv9+GvlE9UMhMsJmx4VstzfeML5LpYhmzuQ2CzOX6hbw69db91G3JeXlLGDYoY5nOT88/ni2D9MRR3AyW+nb8uyz/FsYfx55TVUAnD+f73vzfPDkk0QTJxK1t8c7R3jpq6QnmQ3CjBnG5ylTiH7607wVBYC4KIB/MFCQ5Cs3Utg/4ELGqc3dvkun2YFbJcl/0iq50GrW1PD7Jz9JdPLJzuP6m98kuu4663YxY17kLV1qfJ/kBV9XF2tYNmxgYenPf+Yn5GbtSlVVvGVQA6LU1rKwJMdWmLlUXcCfdx7R6tXWfSor+V3One3tnPi2b1+rwH/YYUQHDxpC1Nlnc/ul09Y5d9Wq7Dl30iRDI9XVRfSFL7BWK6xgILUuZuR9b54PMhnu13ffDTdHuP2/eOmrqJPM+v3Pi+M/sk8f4/Ovfx3uXAAklRyYCCaCovVhyjdJ86GC71TpkrS+T9q9ETdOPixJDcuuCzayaxf759gFN4iauPxwhMgegxMmZPeN9K1zCtog/Y507eXlvrMLuR1F3e2ub/7+l7/k71atCjdH5GqOsbtOFLnmkjZPApBH4MMEosPtaVTSTAfgO1W65EuraUcSfK5yiZ0PS65Mcr0+OTdrlWToeMnq1az9kNqQgweJbrst3n6M03xZHYO33pq9TyrF72ooeB2qj9eGDXwNtznXLuR2FHWfNYvN8qSWcNYsHgs9Pex/RkR02mnG9ebMCT5HxPX/oo7dWbOM65nLqfu/9Vsm/EcCEAgITMAZN4EoaZNvoflOqSZBbW3F7+sSF6UmoCQNs8Cq82FyI6ypkNeHN1OnZvspmctg/i0Xc1ouBX2dj9aWLUTHH+8e2OK889j0ShV8vMy5bW3Z8xyRe929jIkFC1hgEoLfFyzg7+fNM8okTQvLysLNEXH9v3gdu1Hkmiu0/0gAEgIEpkImF/46bgJR0ibfMIuPfPg/mRdvThGrAEg6YQXWsNpqrw9vVC2JvMd1UeGimNPcHorkUtBvayM6+miijg7jOzWR7YgR7Kv35JNEhw4Z32/fTvTaa9l1ke3nNOdWVLB/2IgRPM8dcwwLalVVznX3Mia8RAfdsIHoggvsr0Pkbf6PS7j1OnZ1/7d+y5Q0TTwABQIEpkImF+ZwbgJR0ibfMIuPfJgX6kxcACjF4CVhtdVeH96oWpZx4ziCmrz3UynelhHq/MxpOuEoFw9FvI6XigqiwYOtApNKKsXHdndbv3/zTf5ets2YMUQ33GBoEc3Ck44RI4yIg3v3egvXHiZMt/m7oUOdr0Pkbf6PS7j1Onbt0jP4DZQBTTwAvinyf+AiJxfmcG4CUTFNvvkwL7Sz7c81pbhATzJJ8w3MBWG11V4f3pjNw04+2QhLnUqx8DRlSvDxrxOOcvFQxM94kT5LdmzezC+VPn3CRUJUw7N7Cdc+erT1OocOETU0WOcoL9FBv/AF92vFOf9LAXHvXtaqSe2axOvYLab/WwAKDKyICplcmMPpJmivi+tCW4Tnw7zQzrY/15TiAj3JJM03MBeE1Va7LSbN89HEiURLlhD162dt5yef5LDaQdEJR7l4KOJnvAwdahWIhg2zzss6YYmIqH9/+8AQXsZoVZVVSPISrl0V7lat4nfzHBU0yaxKFPO/nfmlm3YtSYJQof1vA5AjcBcUMn4XGLpIPAsW+J8YvS6uC20RnjTzwlxSSgv0QlgQJM03MBfEvWjUzUe9vdZ91G2/6ISjxYutSaEXL+bfdONQltPv2PQzXtTznXii0R5z51pzQpk588xwkRA3bbImr920ya1W1gS4ZsLOUbq2j2L+tzO/DKJdyxeF9r8NQK7IQZjzRIA8TCI7/0JdXbB8DF5zZ8SZXyQfyJwXkydz202ZEj6/ji6vST4ohtwcXvMeFUJdSy2HUy7QzUdlZdbvysrCXaOzk+/hwYP5vbPTW54g+X3QselnvDhdw3yepibO22SuS2cn523q31+I6mohxo/nfWpqrPv5va5dXcz/UeaXU7lbW412N29nMrzvLbcI0dwczxxgl2+qqsr6fVVVNNeLg2L73wbAAeRhAnpULcKGDcG0Cl6fZhbbU3LzkzfJsmX8HvQJXFKCPuRTuxaVxidMaN6kkSQTnWJBNx/ddRfR8OGsWUqliL77XaLJk9ksraPDCJv99NPexmZFRXZAB7vx5iW6m9ex6We8ON3r6nnM9+aCBdxOK1fyb52dbL5YU2NE2nMKauH1vlPn2bo6Ltfo0dxHa9dml1u991euNEKNy+377+cIgQsXEu3fH88cYGd+uWVLtg9TUim2/20AIgICUymhToSjRhl/Kn4mRq+L62IzcdPZ74f9s01K0Ae7BVcuzNeiMgEJE5q3FCgEU8Q4MSc4Pf10ftjxk58QDRrE46CykujHP7YeIxfeRMHHpt148xLdLd9jU703ZSJYMzt3WrftHvp4ve/UeTadZn8zJ9weBm7YQPTeeywwHX44C0ypVPTtbOeTWlXlHhEwDoLc88X2vw1ARJTQvyXImgh1Pkxe8Po0s9iekuvs98P+2SYl6IMdubBnj0rjEyY0bylQzL4JfhOc6gI7uC1ohSC69Vb+7EfYtBtvXqK7NTYS/fvf7Pt08CCP61mziK67Lriw62ccqPemjiFDrLmc7B76eL3vgjzQcHsYOGoUtyMR0RFHcDTEsrLo5wCdhlFHrh5eBLnni+1/G4CoyIGJYCKAD5OG/fvZ9jyd5vf9+/NdomQThw9T0smFPXtUPkXw+3GmmH0TvIwhtf5BX7n2e6uoyC5DmOv7GQdquzY3C9HSIkRtLb+am/l/Q/XbEkJ/P+p8vFTc5lndeb34MP3v//LxjzyS/7khV36UubjnZdtv2GDdzncbA+ABP7KBL4HptttuEyNHjhQDBw4UAwcOFOedd55oa2sTQgixZcsWQUTa1wMPPGBfAJtjFixYYNnv73//uzj33HNFRUWFqKqqEhdddJGfopeGwOR3wVhTY51Ma2pyU05QOOTijx2CTm4ohGAXQfGyMDTX3+5VUyPEpEn8Xl3NAQ5mz8525s+lsKkrZ5jr+xkHu3YZAltFBW/rvvMa7MJPkBs/wTKSjjrHTZmSm/GUyyAif/sbB9bo7haivLww+gWUPLEFfRgyZAjdeOONdOKJJ5IQghYuXEgXXXQRvfDCC3TyySfT22+/bdn/N7/5Dd1000104YUX2p5TPebRRx+lyy67jC655JIPv/vTn/5EX/va12j+/Pk0adIkymQy9NJLL/kpemngV/2u2p6r2wDkwnwNJiC5oZhNEb2YcZnr/8lP8vv69RzIYN8+/m3rVqLVq9nMzEyfPjy3nngi0Y9+RHTWWTFWRqGigkNxmwlqBpzJcH2lL9IXv8jbajJYyYknGtfu6jK2zd8NHcoBGdRw2ul0tqmtnyA3foNlJBn1v3nixHh8qFSC3vNBzDZ37SIqL+fvjjyyMPoFAD+Elc6qq6vFHXfcof3tzDPPFJdeeqmv81100UVi0qRJH253d3eL4447zvYaXikJDZNf9Ts0TAB4p7tbiHvuEeJf/+IXNGHJIYyW0ktocXn+r30tujJ7ZdcuIfr1M7QEP/xh8LHnN7WEVzNFXThtaJgM1P/myZPtx2sSNO5BzDbnzTO+O+OMwugXUPLkJKx4T08PPfjgg/T+++/T6NGjs35//vnnaf369fTLX/7S8zn/9a9/0SOPPEILFy788Lt//OMf9Oabb1JZWRl9/OMfp3feeYfOPPNMuummm+j000+3PdfBgwfp4MGDH27vk08Qixm/zrIbN1oTKm7cmJtyAlCI/O53ROPHEx11FG/Lp7YgXrw4yIfRUnpJXhuHFtSr4/8RR2RrmILiN7VEVZU1yWpVlVXDRMQaMF20T51246qr9El8dZiPHzOGqKeHNWGjRxPNnk103338e08Pt2WSIz6q/83jx9uPpyQEZ/GzlpD9NHiw8d33vsfaSwCKCb/S2Isvvig+8pGPiPLyclFZWSkeeeQR7X5XXHGFOOWUU3yd+0c/+pGorq4WnSZH0N///veCiMSwYcPEQw89JJ577jnxX//1X+Lwww8X7733nu25WlpatL5RRa1hSsKTKQBKhT/9Kd8lKA3i1iiESV4bZs7Nh6bEr4Zpzx4j6WpVFW/rfJh0AYR0bRO0zlElXc8VbkEonMZJEoKzYC0BSoTYgj4IIcTBgwfFpk2bxHPPPSeuvvpqccQRR4iXX37Zss8HH3wgKisrxc033+zr3CeddJK48sorLd/dd999gojE7bff/uF3XV1d4ogjjhC//vWvbc/V1dUlOjo6Pnzt2LGj+AUmM5jwAIiW7m4h1q4VQpoHb92a3/I4UUz3v7qAlFHToqrbjh2G0FRWxtteCSP05GNh7CWanFvbehWEdN8FrbN6XBRBOOK8R8KMi0I0OQSgQInVJK9v3750wgknEBHR2WefTc8++yzdeuutdPvtt3+4z0MPPUQffPABffnLX/Z83tWrV9Nrr71Gf/zjHy3fH3PMMUREdOqpp374Xb9+/ai2tpa2b99ue75+/fpRv379PF+/oNGZdiRBrV/MlHoS0DjJZdv6vdbSpUSbNhF95StEw4fHU6YoKKb7XzUP6umJtm5HH03U0mKMgaOP9n5smAAE+UigrDMtNG/PnevetrqxZdcO6ndB6+wl6bp6L+vyDJrv7TjvkTDjoliCs2QyRH/9K9Ell7AJ5q5d3G9lZfkuGQCBCL0K6e3ttfgKERHdeeedNG3aNDryyCM9n+fOO++ks88+m0YpSe/OPvts6tevH7322ms09v9Nrt3d3bR161YanuQFSy7x8wcGoqGYFqRJI5dt6+dahRTNr5juf3UB2d7uXDe/QnCY8RZG6PGzMM7VQwQv40a3j107qN8FFQbkfu3tho/Z8OFEHR1EZ57JwpHajytXGkLVE08Q9etH9MMf+qtrUMKMi6TOM0Huq/Z2ouOP5z5SI08CUGj4UV1dffXVYtWqVWLLli3ixRdfFFdffbVIpVJiyZIlH+6zadMmkUqlxKOPPqo9x0knnST+/Oc/Z6nEDjvsMPGrX/1Ke8x3vvMdcdxxx4nHH39cvPrqq+Kyyy4TRx11lNi9e7fnshd1lDydmQPU+vGSBDvzMNiZoyTBlCuXbVvo/WhH0u//OH1//NY9zBjI1f0SR38G9THS7WM+V0sLJ7Q157OSuZm8JK712g7yZWfu52a2F1WbekmkmzST2CDlC3JfnXUWf963T4irrxbillvClx2ACInNh+nSSy8Vw4cPF3379hVHHnmkmDx5skVYEkKIa665RgwdOlT09PToL0gk7r77bst3t99+u+jfv7/Yu3ev9phDhw6J733ve+Koo44SAwcOFFOmTBEvvfSSn6IXt8Dk9geWxAm70MnHgjTKPk1yyN5cliEJ9Y2DpN//YdrdrW5+BaBCGANxCPZB/ze6uzm0uTy2Xz8O/KA7ryrU+AkrrkNtB6eHhG6BIaK6R3I5fsIKnJIgZQ5yXw0bZpSbKJn3FihpYg36UKgUtcCU9MVRMRJlm3s9V5R/zHZ/frnQuLjVN87xHCZ6FYiOOMeZ3/skydpWSRyL8kmTrH1gyn9oQRcVT27LV0WFsb+TUKPL1+QHJ2EsyL0dhQCSSy11WIFTEqTMQe4rc26m66/H/AoSR07yMIEEkVSb52Imyjb36kMRpc29nY19LhzR3eob53iG71kyiHOcmf1kRo9mn5eGBv85nJI0VuLwd9q82XlbMnSokXepq8u6LTFvm/tWYg7MoOZr8oOs9+rVRN3dRNu387mlX5NTQAsdU6ca5VmxgreXL/dXplwG79iwwXnbK0HK7Nf/LJ3mfFnq8QAUKBCYAMg3XgWhKP+Y7f78chGhKZ8BCYopGEIhE+c4MwtAXqK+2VGoY8WroNfR4bwt0QlHFRXZyWslZqGmp4ejoo0fz9/PmsVCyYYNLCy1tdnXo6sre9+KCn3fzp3L1/Er0EYhgOQyqp0uQXAQgpQZD2ZBiQOBCYB841UQivKP2e7PLxd/ivkIp+z32ggbHy+5WnwVWthvovBpItQogu3t+mtUVhLt2WN8d+aZ+vPphKMdOwxNk9y2E3DMpNPeNThu2p8oBNooBJBcChJtbd4FTidyVeZMhsOJH3MM0f33E33hC5hHQcGCkQtAvvEqCBXLEz5dfXMloHht6ySZYyWZTIbouuuI7r2Xt6dPJ2pqSs6iKFdhv6MkbJoIaZ5mty2vsW2bsV1TY7/41glH6bQhSFVU8HYU5m1m3LQ/UQi0UQkguaKiIlyb5pr584nOO48FpsceI3r9dcyjoGBJyL8aKEjwFD4a3AShYmtnXX3DmE6FvbaOQjXHyjXz5xO1thrbc+cSlZdH03dRjPswQo8cK7IcU6fm5v7zk+dIR3m587Z6DSLOlWOX5LWqiuiaa4zfqqqIjjySaO9e/n3vXqIRI7ITkgb1r5G4aX/yneDVbXwmed7OZV6ve+7hsfbWW0TjxkV/DQByRQ6CUCSCoo6S54dchKYG0VIK7Zy0fEil0OZRoIuIFlXfBe2DqKPb5XoshE0T4eX4lhbvIbh159NFwYsqgpskqhDaToQpc9T5wHJJrsqW5DYAQCBKHnAiSlMjPIXPDaXQzvn0a9KR76fXhcLYsURLl2Z/RxT+KXbQcR+1OWWu7z/d2PNjjqs7Xm2TpibelvusXm1fR139q6oMDRMRb3s1b/M6LnJhfrZ+vfO2E27jIsi4CXrP+D0uV2Ma8ygoIiAwlRq5CE2dBJJsDuGXJLdzVCTtj7VY/MXiprGRfWTMPkyy78IKLkHHfdSLwVzff2HHnu54tU3WrSNassT4fe5comXL9HXU1f+BB9gMb+9eFpa2bOHrTpzI72PH8nvYABZxowa+6Ow0/LLccBsXQcZN0La57jrDNHbpUr4n58wJXvaowDwKiogCXUGCwOQiNHUSSNKfclhy1c75FDLxx1qYpNN8n+kWZ2EFl6DjPurFYBLmubD3pq5NzOccM4a1TmvXcijw9nYWohob7TVeZkGDSO+HSBQugEXUZDJGu910Ewe72LrV+F1G+vOi2XIbF0HGTdC2kQ8szNtOApPXshXTg0cAwpIDE8FEAB+m/0eSstfHSdJ8YgoB2JuDKPEznqKcl4pxjgt7b+r8gXTnDHMd3Zyr+y6qecaLj5M6Fpqbhdi7l3/72MeyfZiI+Hz5Imjb1NZa61Bbm9/yAFAgwIcJ2FMqT/KTbMaW1Kd2peArBXKHnyfsUWqEi3GOU+/NhQv9zRsLFhCtXMnHrlxpRMTT3e9B5wC7OVf9LozGzjx3btpkaIfswpir42rECKKZM9kU7/DDObKfqmUKmgw2Cq66iujuu4l27iQaMoS3vTB9Omv4zNtRgP8EAD4kAas0AGIgbjOaMEJPUs0Fkyxk2pFU4RP4C8uNhZkzanCNzZu5Tb3OG26hyom4n8aPjydvVdAAFirmuVNFF8ZcrTcR0XvvEdXWEh1xBNEnPkH03//NCVUlV1wRrGxRMG2aIbxt3crbXswDm5o4fHzU/3eF+J8AQFzkQOOVCGCSByIlatOVJFCIpkwwGUk+P/6xex8lsR+TdD90d2ebXfmZN+xCjasmac3N2XXORXhvr+jC2MuXLiS4Wu+WFiE2beLf/vIXrp/uXPli8ODg5oF+xqvXfZN0DwAQAzDJAyBuwjwRT+pTu0I0ZYJmIvm0t7v3URICK6gkSROcTrMpmSxPFNqfdDpb0/fkk6xlMjN1qpFA1s70LVeoWrGaGqJ9++zDmNvVm4joootyUmRfuCXrdcLPePW6byH+JwAQExCYAAhCGKHH7+IQZmf2JFX4BAZnnUW0eLFzH/kx38sVSRPGwwiVdgtf9f6R4ajNC2nV1E1n+pYrZJ3b27msqRSXtayM/bLU8ZK0Bb/bXO41l5UOP+M1aWMbgAIAqy7gDSzarcSxeLEjSU+6k4affsAYzg/5Cv4QlqQJ43Es/tW+0SWwDaP1CIu8Z1ev5nDnZWWsARs7loMcmH2ZpNbLbxv95S9E/+f/WLfjwm18h0nW62e8Jm1sA1AAYLUAvJGkhUwSyOWTSzwNtMdPPwQdw7kUtIpRqPPTR0ka60k0E4watW90CWxnzTK0HmecQXT++UQNDdY2kWP2vPNY+7Nxo6EhSaejCZAjWb6co92pgR+CjpeLLtIHkYiDOMe3n/FaCmMbgIgp8H9ikDOStJApNfA0MBqCjuFcPiwo9QcTSRrrSTPnygWNjSy0/+IXnMR12TKi7m42f+vtJVq1isOSE3HUvt5e1vrIMWuO5Cf9nSZODD6mzfesRG5LczxJ0PGSy4cUcY7vdNoIS75iBb9v3Eg0YIB+37jGdk8PR+wjYoG5oaHwH/oAQBCYgFeStJApNZLwNFBdVMyaZeRyKRRNSNAxnMuHBaX+YCIJY72USae57ffs4e32dn7Zce+9RMcfb6+h2bCBzxlFgBxJKsV5hsrLs031vIwXuaDfupXonntY6JPmfXE/pIhzfGcyREOHEu3dy9tbtxKNHEm0ZUt01/DCb39LdPnl/Pnll4mee670HjyAoiThKxyQGLCQyR9BngZG/dRU1XysXGkkwiwUTUjQMZzLhwWl/mCiFLU6URDl/e43qINOqJGMGhVNgBydYBS0fnfcwbmXKip4TjOb98X9kCLO8T1/viEsSXbujOdaTixeTPT1r3NbjhhB9Jvf5L4MAMQABCbgDSxk4iVuAYcoXP+pmo8NGwpPExJ0DOfyYQEeTHinGP29ghLl/a4GeXBi+nTrmLXzYZK/y37q6sqOBldRkX3+OP53Vq1igenww7PN+wr5IYVuDh4yJPflGD2a38vLiQYPLtz2BEChRP9dAIiJoKZrcQs4YQUa9SnxqFGGhqmQFxleyOXDAjyY8E6p+3uZifJ+N4e2PuMMI3rehg1EHR28ED7uOKL/+3+JZs+2jtmuruxr68Z0Q0P+cjudfjq/9+lDNGiQYd6XlIcUQR8EjB1r9SGrqmLBNddccw37vfXrx22t5vUCoECBwARAlAQ1XYtbwAkr0KiaD50gCEAuKXV/LzNB7/dMhmjePKJFi3h7xgwWglThZe9eomOO4fNnMkTbtrF5nLqQ95rkNh+5naQg0t5O9N3vEvXvz3X/xjei0UyaBZ0xY7itnnySfaTKy4nGjfMm/AR9EOCUpDeXmBMiH3VU7q8PQExAYAIgSoKarsUt4IQVaHRPiUv1aT4ITxTmdKXu72VG90Bj7lxvmu25c43t1lYWhNR7e8QI1h6Z0c1lXgUhv7md/IwXu33NgsiuXUTDhhF9+9vO1w16frOmR7JsGb+7zZvt7db/DKegG2b8aqczGaLrruPAHUSsaWtqKl2zVgDcECVCR0eHICLR0dGR76KUHt3dQrS2ClFfz+/d3fkuUXy0tgqRSglBxO91ddbt1lb9cXG2kTx3XZ0QNTVCVFfze11d8fcHyC1ex7F6n9jdF1FcqxTx2r719byP+VVfn72fug+R/px1ddZ96ur01+3s5N8GD+b3zk7v9ZHn9Tu2zHX961+FePfd7GO9jCkv57d76dpWxWsbhqW11VufRgHuVZBQ/MgGeJQA4qeUfA2Cmq7FHT1JTf64Zw+HnZU5VYq1P0Bu8XqvR2FO5/WeyVVwCN11iPITmMJr+6p+L/I7laoqawS2igr9XNbWRnTBBUTPPMP7jB3L7SLrbG6jiROJlizx1h5qPqYVK/g8fsaWWSNZUUF05JHZx3oZv17Or8OrFlTmMLLbjgrdmIjLrLWU1gCgaIHABOKnlHwNwpiuxbWw0yV/lBRrfyCCWn7ws1DPlTldrhZruusQ5Weh6LV9Gxs5XLfZh0knCG3ZwmZ5e/ey8LRlC99Puvts0iQ2I+vsZJMv85wYtC90gp3fsWV+mHXssfpjvYxfL+eXPkyrV3Nb7dvHZoezZrnXddw4Nt+T5x83zv2YIHgVlqOglNYAoGjBCgLETyH7GngNfxvFAj2uhZ3Tk89C6w8ib22NJ5r5wc9CnSg3QUNytVizu06uFopq0IGmJqJ169w1262t/HKiqspIZmtGd585tXfQvmhsZG242e/J79hy0kjKtnvjDeM7u/Hr5/xz5xpBf1auZGsDt3nI6d5wmvsOHOBEtTt3cjjxF14g+tnP7OfJxkYOSGH2YYrrPizkNQAAkhyYCCYC+DDlkUK2X/ZqTx6FT4ZqA+/F3t0LxebD5KWt42pL4EwS7/Uo7s2g12lpsY7DlpZ4rm13/bjR3WdO5QhSRjmmpkzhOWvy5OjHluojVVsbzTWinoeamqzna2oyfhs2zPpbZWXux4MdSZwXABDwYQJJo5Bzy3iN+hTFU+y4nsLJ9tf1QVDNWD5N3sKYzYB4sbvXoxgvQc+RK22W7jrz5ln3sTONjYJ8mD3p7jNdO8i+W72afZfKyjg/j5e+MGuxUin+HPX/iWq2fPzx0Wv3o5iHfvGL7G0Z5XD7dutvHR3G53ybwRXyGgCA/wcEJgCc8Br+Noo/xigXdl4Xl0FN1/Jp8ualrXNp8gXciWK8BD1HrhZruuusW+e8HSXqfTF6tLfQ4mGYNYtNzaTJsp2PThihJxeCoG5OiULIj3oeUkO7q9sqqRQeGgEQERCYAHDCnPVe+jDpiOKPMcqFXdzRyvLpxOulrfFEM1lEMV6iHnO50JLmUtOp3he9vdE+1ND5cy5YkO2jQ+TPr8mNMG1o54Pa08PR57ZsIbrsMt6urGQ/oCFDiK66KhohP+p56NxziVatsm5LBg3i4BKSgQOJvv/9wnxohKA9IIFgBALgREWFPlO9StIW6HFHK8unyVvS2hq4E4X2I+oxlwstqdcHKVEsENX7oqEhWgFz6lRD275iBW+n094CXYTpO7c21AlFMpHsT39qBKuQZV6+nOiOO4j++7+J+ve3WhAQcbqFadPs65ZPHnvM/gHetm3ZkQyrqvJTTnMo+RdfJDr1VH/jGUF7QAKBwARAMRJ3tLJCNXnDk8v8EIX2I+oxF0br4XUceRXu41ggRi1g6vw5v/Md/TWc/JpGj+b+b2jwdg+qbZjJsLDd3s7nWb8+WyiaODE795y5DitXEp1xBlGfPvZ1tatbGDIZolde4Wh2RIamS93Hbmw5PcCzi2SYD264gegHP+D+2bfPPmeWHQhDDhIIVgoAFCNui0v1T1k+lfVKoWp58OQyP0Sh/Yh6zIURKMKMI92COI4Foho2uqfH+uTfLzp/Tt0809VFdPfdHN76uOOIDh1iIUbOM2HvQV0ibjMbNli1Q2odiFhgGT2aP6umbE51C8v8+TzWRo4k+uADoiefJKqvz96n0Oeo1auJ/ud/2CywstL/eEbQHpBAIDABUIy4LS4L+U85jJYITy6TQRIWRGEWxGHGke7ei6M90mmORrdlC5933jzWZvi5z8332llnGf5KZWVE99yjP2baNDZrI2Izseuv589R+DOpx+sYNSo791z//kTnnWeYsM2axYJc375En/kM0Ztvclllgln5ACmOaHwf+xh/PuwwoldfNQQm2da33prdPro5jyi52vKxY7ktBw4kqq72P54L1YIBFDUJubtA3oGpUmlRyIJDGGEvCQv1YkJNlrlxI9GAAe7HJWFBFGZBHGYc6e49uZCPuj283Oe6uT+TYa3QU08RdXbyfkuXGsf09hKdeCLRNddk34t2qRei8Gcisk/EbRaK5H+Xk4DR1MTf3Xefv+uHYexYopdfNrb37jW0fjrNmWwf3ZxHlNyHXo2NRO+9x5+PPNL/eC5UCwZQ1GBFXIwEEX4KWeMA/FPIgkMYYS8JC/ViYuRIQ5uwdStvb9mSzxLpifqBUJhxpLv34logernPdXP/ypXZwRBUurr096JquidxytPkB7m/9GEqLycaN87ap5mMez2/9jWiY47xd21zPqmeHms+KXU86cZcYyPR975n7LNqFZenuTlbczZ4MPtRNTay8OoluEZSSKeJPvpR/tyvX37LAkBEQGAqRoIIP4WscQhLKWrXCllwCCPs4clltOzc6bxtR64f0ER9vTDjKJf3npdr6eZ+Oy2RmYoK/b04a5YRyW3kSBYonnrKOrfKtlMFEJk3yEkQ8dL2uv5W6/n22/4FJp0WSAZhUMtkN+b++U+i//N/iN55hzWyZWX8m9qW3/mOcU67Oa9QH3oBUIAU+aqwRAki/BSyxiEspahdK2TBoZCFvWJjyBBDwyS3vZDrBzTq9RYuzP2DkbCBVoLg5T63S9pq1hJVVxN9/escpvvgQRaWduwwwlarD5vM+evKyoz8RypOARzsBBEv6MaXWs++fcOdV2I3fu3G+OjR1iS+8r/WaV5z+g3zIAA5AQJTMRJE+IliEepXU5MUR9ZS1q4VIoUs7BUbGzdm+zB5IdcPaMaOtfrgbN5sH+pYnZdmzeKErGHnpKQ+mNHN/VddZfTrcccRTZ/OWqJzzyVau5bN8U44gYVlXR10OZt04bCdAjiEmYt140ut56mnhjuvxG782o1xu/9ap3nN7rckjB8ASgVRInR0dAgiEh0dHfkuSvx0dwvR2ipEfT2/d3fn5rqtrUKkUkIQ8Xtrq//9/Z4jH+UGAIQj13NUd7cQtbV8j8vXlCn6MqjzQV1dNPNDfb31+vX10dVPR5g2NreB06uqSn/84MHW/QYP9n+dMG3tp+49Pd73leedMoXHxeTJ9sfEPcbz9T8PQBHhRzaAhglEh19Njd3+udb25MLEqxT9pACwG/d+tIRu946XeyudJpo502oK1dOj1/io89KGDdHMSbnWqoXRaLmF7pbs3av/XpezSYeca518mIi8z59BzB6fecZ7O/kZt2E04V7qm1SNJQBFClZsxUi+JlK/C4KkOLLa/bFFaZqDPzdQikQx7t3O4fUa6oOR9na9IKTOS6NGGfmHwsxJufa9C2NqbBe6W0X6MKmYfZhkXiMdXoUKr30cZLz17Zs8k2wv9YApOQA5BQJTMZKvidTvgiDpjqzqn9bKlcbCKcwTW/y5gVIhinHvdg6v11AX53Pnsl+Nm4+J7kFJEHLtexdGo2VugzFj+ByrVxO9/joHeyBiLdArr9hrQyZO5HcZNj0MXvs4yHg79lhDs5WUgEde6hGVxhLWDwB4AndFMZKviHd+FwRJd2SN0jSnlKMQgtIlinHvdo6g1/DjfJ+UOckPfh5g2eUMMn83frzVzK63l+iLX2TBKO6kql77OMhY+OhHuaxmAXnu3PwKEF7qEZXGEtYPAHgCAlMxgrDL0RClaQ76BMRNEp8URzHu3c4R9BrFHm3RT/10i2Yi63cjRmQft2EDXyduX1Sd1k8n1KiasZ4eooYG5/shlcrWPOZbgPAypqMav3FZP/T0cFJhIo5QWVeX//kIgBBg9BYjxb4QyBVRmuagT0Dc5PNJcRTBHexwO4fu9yQKj0HJRV28BODRMWpUOF/UTIZo3jyiRYt4e8YMotmz3et3440s2Khj3TwWggo+STCfzuX/RVzWDwsXEl16KX9evZpo3Tr8B4KCpkD/QQDIAcVimlOqFNOi2Qv5XOj5Fdbi7ptiMjPKRV28CD3Tp/PnX/yC8zCde641Cl0QX9T581mwkbS2sm+UWj+1DUaMcB/rQe+HYjOfdgtedNVVbDkhA3TMmhXNdRcvNvzYXn+d6N//jua8AOSJIl49AOCBUltUlxLFtGj2Qj4Xen4Xp3H3TRK0BFGRi7p4DcCTTlsFHElQX1Q7QUf3nartcgvUELVvWyGg+z9zC15k3l65koWpKO7Fs84iev99ToC8axfRuHHhzwlAHsHKEJQ2pbaoLiWKadHshXwu9PwuTuPumzDCY9IeouRCEM5XAJ6xY9m/Rf1Ot5+q7Sov5z4aPZoDUKi+SqXo26b7P3MLXhRVnjGVxkYjouLllxNddFE05wUgT0BgAqVNqS2qS4liM61xI58LPb+L07j7Ztas4GZGXh+i5EqwKmSNhxuNjRwcwOzDpKuf2p/XXENUUcG/mX2Vli5l35mZM/k8+bofgibaDTuGdP9nbsGLosozppJOG4FCLrkkmnMCkE9EidDR0SGISHR0dOS7KCBJtLYKkUoJQcTvra35LhGIiu5u7s/6en7v7s53ifJLktoj7rKEua/r6/k4+aqvj/4aQiSrP5JCZ6cQdXVCDB7M752d/L1TW6v9lYS53OvYiPr/R3c+dZx1djpvYxyCEsKPbAANU6mTNPOTXFPMT29LnUI2rYmDJJmfxt03YTTHXrVffq7hxbeEqHDHa1cX0dSphgaorc3QABFZ63/eeUTt7UQbN2bvO3Uq53o66yz2fWluNgIU2LW1ub8k+bYWiDPRrhO6/zMvwYvyOe5KfQ0CCgaMylKnmP60g4BFNSgVSsn8NIzJn9eHKH6u4cW3JN/9EWbhKgUdIn6fOpVo+XLjd3P9zT5L6r4bNvD7BRcQXX+9Yaon27pPH6Lubt6W5W1v52hs27YRbd7M+6dS7NuUrwS0cSbadaIQ/89KfQ0CCgYITKVO0v60w4KnVQDoKSWfrjCaY6+LTj/X8OJbku/+CLNwlYKO3ba5/k7HzptH9P+3d+7xVVTn3v/tJEigkEC0WDWUEMVbi/iqrQUDEjBYaau2Vo9WlH60tVp7jtZjKWK5JNhU0VroW+vbWi8pFLVaW63GCkWugsdLEeOlFIFYqdcWCFATzE7W+8c6w549mZk991kz+/f9fPZn79l79syadX2e9TzrWbt25SKqfelL8n32bODGG4EVK4Bnn+1rodM2ny0pyeVtb2/h59HGi3PPBY46CujfP7fZqh+c1g16OKRPBiGphZJksaPaoO0Xzlb5gwpneikm4SyKmXY39zDrZ1UrD6eCq5n73ZgxOQsTII/1mEXDMzv329/Off7wQ6CyUn7OZKQiM2WKfJmld/16YNmy3P+nTCn8PNp48eij8n4XXRRMvXFaN5JoEQqatMkgJLVQEip2VBu0/cLZKn9Q4UwvUQpnSVe8g06/07UlceJUcDVzv2tt7atE6Zk1S0av01zmAPn848f3PVdj4EB/6XXyPOvWych8v/gF8PjjwC9/aX9PEjxpk0FIaknQCEZCQbVB2y+crfIHFU4SBElXvINOv2r9rJlCaCe46s9/9tn8a23aJIM26NcsAX0tUV/7mlyXpPXNs2db50k2Ky0+27dL64+WFn2atVDxVoK2E0G8rg54+GGZ/nPPze0bRKJDtbZBiAVUmEi64GyVP6hw+qOrC2hoyCma/fsDO3YAhxwSb7qiJumKd9LTr8fMhW7BgvwgDPfeC3R0SBe42tq+19ArkEbGjDG/h9ESJYS8hpO+2bg+ScONEutEENfSoKX7mmvszyeEFC1UmEg6MM6YtrYmywVIFcJSOM1mtIFku22ZMXVqvnC9fz8wfDjQ2RlfmuIgSYq3Wd1MUvoLYeZCV1aWr/y0t8v3XbvkZ+18TeEwBm0YOjS36amZcqQpT3pefjl/nZMdVgpr0EqsUakqKfF/TUJIKkm4dELI/5J0FyBVCMs9wqx8gPSVmVFIBOTse7GRJEuvWd2MK/1hrP0yi2B3zTV99y7SY7fXUSYDXHttfls1u0ehQBB2WCmsYSmxmgtgRQXwwAPAV7+a/MkbQkigsEcg6SBNLjRpJKoZ47gxColA/gaexUKS1iWY1c240h/GxI+xTlZU5K//2bIlZ2HSMCokhRRIM+WoUCAIO+zuF4YS29wMvPQS8N57wIYNwN/+lpz6SwiJBCpMJB2kyYXGjKRHHYt6xjguWlv7rmFK00LypNdDM1TqO4zKW0uL/zxubQWOOy6nFLW3yzVMmkKgrT966aVcHpx4Yk6pAuT9Z8wAVq0CFi2S762tuckAM+XILBCEU6wU1rCUmHXr8sOep2HyhhASKAkf6Qj5X5LkAuSFpLscRj1jHBfl5cDatXGnIjySVA+dKncq9R3G/Yq2bZPP4DSPzZ65vBwYNSrfiqRXCDTFpqkpV7arVuUrVYD5OiVNIfKjHKmASkozIURJqDCRdGDnQuM04IDZd6rMnifd5TDqGWMSDkmqh06VO5XcB832K3KTx1bP7HRPIruyNVunBAD79gGjR8tokNXVQFsbMGiQ8zSrgEpKMyFESRSRBgkJEacBB8y+U0WQ4gwoUYGo66EfF8AkKXcaZWXA9On5IbXd5LHVMzvdk8hYtvr8r6gAdu7Mna8FcRg9Ot/db/RouX9SkPh1BS30f5WUZkKIklBhIunHTcABVQUszoASFYi6HvpxAYxzksGPgO8nj62e2c2eRPr7GvdfqqkB9uzJD+KwY0f+dYzHQeDXFTRJrqR+SeM6Q0IUgK2IpB83AQdUteJwBpSoQNT10I+VKM5JBj8Cup889vPMZvc17r80ahSwbFn+OdXV+eujqqtdJdkRfq2FSbQ2eqWYlENCIoQKU9qxm20qlpkotwEHaMUhRA38WInKynJWknXr5HtUfVxcArpbZavQGOAk/9va+q5hChq/1sJicmkuJuWQkAhJoXRM8rCbbSqWmSg3AQfS+PwqUyxKO/GGXytRXH1cUgR0u/zJZoGeHmDkSHl8ySXm+T9oUPBrloz4rQfF5NKsWt3r7QVKSuTn++4Dpk1jH08SCWtt2rGbbeJMFImbYlHaiTlhL8aPq49LioBulz/NzcD8+bnfFy+Wgm+hSY0wJkH81oOoXUnjnAhSre499hhw7rny88KFwN//zj6eJBIqTGnHbrZJtZkoUnxQaS9uwlaY4+rjkrLm0C5/jOuXtm2TZQXYP5tqkyBxKC9x5oFqde+JJ3IK08EHs48niYUKU9qxm21SbSaKhIPKbm9+BVqVn40UJmyFmX2cxKqd2OWPvm1qOCkj1SZB4lBeVMuDOBk3Lvf5hBOAoUPjSwshPqBkkXbsZptUm4kqBopttrMQSV2jojJJUiLDtgCxj5NYtRO7/NHaon4j3UJllM3Kl4YKngtxKC9GZbO7GzjySPl52jRg9uz422RU/cQll+Q+n3NO/PWBEI8oOooSohBBDiyc7cwnqWtUVCZJSiQtQM6JehNfrW3qIw0WKqPmZmDlytzxxInxl2kcbpn6ep3N5udJUxNQWhp/m3TaT/gd//TnTpzoJ8WExAoVJkIKEaQAGvdspwozvnr8DsYqP1tcJEmJpAXIOXFt4uumjIx1TWvLTU3xWTzjUMr1eTZlSt/fVWiTTvuJJE3AEBIiVJgIKUSQAmjcs52qzeL7HYxVfra4oBKZTpKwia9Z3Ytb4I5bKa+rA5Yv7/td3DjtJ5I0AUNIiFBhIqQQQQqgcc92qobfwVjlZ7MjzPUDVCLTSVRWIj+Y1b2pU4tb4J41S+5FtHixPJ42TY026bSf4AQMIQCoMBGvJGlhuV+CFECTKuCHRbEOxmHOurOOpZMkKMJmda9Y27hGWZls61pIdiNBjaVur+O0n0hCvSMkAlIq4ZLQidvNIkoogLrDzcDtdDBOm4JONxf/hF0nVKtzSe2HKHDbE9RYGtaYHEa9U61tEeIA1lDiDQp8xAo3A7fTwThtCnqxz7r7pasLOO44oL1dHmtrRIKsE2mrc3GRVEUvKoIaS5M0JrNtkQRSEncCSEKpq5OCHkCBj+QTxsCdJGHACbNmSYGhoUG+c9bdHVOn5pQljaDrRNrqnBnZrIxgN2WKfNfvoUSiIaixNEljcjG0LZI6aGEi3gjazYIm+nDxmr9e/heG9SRtFhnOuvtj06a+3wVdJ9JW5/Ro7Vq/KS1n+uMhqLE0Sa6PaW5bJLVQIiXeCFrgo4nePbt3AyNHyvchQ4Dt2+W7GV7z18v/whi4kyQMkPAZMyZ/M9CamuDrRJx1rqtLWtE2bZLP2toKlJcHd319u9bgTH88BDWWJmkShv05SSBUmIga0ETvHk1ZAnLK065d5ud6zV8v/wtj4E6SMBAVxWyVbW3tq1AE/exx1rmpU3MK4cqV8vjpp4O7vr5d6+FMv5qkra2zPycJhGuYiBqo7H9t5uevgu+/pixZHevxmr8ql0uxo1kJli+X783NcacoOsrLpQLxr3/J9yCtL3riavsvvWR/7BezdhyGlY4EQzG3dUIUIcFTFCRVqGyiN3NLA+J3IRwyJF9JsnLHA7znr/5/p54qZ7sXLgQqK4HaWuD005M/25lUaJX1jzZzv3Yt0NMDlJQAEybk6nRcbb+yMt9aXFkZ7PVnzADmz89X9vbsYTtWFbZ1QmKHvSOJBzMXA1VN9FaDVdwD2PbtfdcwWRGEC8SSJbnIZLt2yc+a25CqZZdmuHDaP2ZreTTXtzlz4mv7tbX5UQBra+V7EK5Zu3cDhx3W1zI2ZoyfFKcPldzg2NYJiR0qTCQekhTkwWqwinsAGzIE+OCD3KD+059aD+peB38zgVJPMc12qiRAAeZWQ9XSqDpma3n0dTqKtm9WZqefLicjtHucfro8N4h+c+RIGVRCz9Chch0YUTOCoMoeGIQUCRxJi524BKwkuRjYDVZm30WZp04FKK+CltXicI1imu1ctUotJd/MatjUpFYaVUevEGno67S+7Y8dC/T2As88A0ycmO++5weztmnV5wTRb5qtdbz22vDWgSWNMCII+h0TGCSBkNihwlTsxGXpSYKLgT60b0WFnJnVsBvAosxTpwKUV0HLKFDW1AAdHX3XMBUDn/kMcNZZciZeVSU/SRMRKqDVXbM1TEB+O9cro5mM/BxEuzYrM6v+JYh+07j2sby8eNqwE8wmiTIZuYZz0iRvod6T5FERNbSKk4TAWlnsxCVgJcHFQB/ad+dOuaZg1Sp5bDfYRZmnTgUor4KWWTkV62D2sY8BS5cCJ50k14upqOQnYSJCJdzM3IfVrt2UmVHBW7NGKnJO2uW+fcDo0fK9pERay7S1j8XSpp0I58ZJotpaYPp0ORZo/b/bUO/FNpGh1eW1a4Gzzw5nj0BCIqZIekliSVwCllsXgzhmoTZt6vudk8Euyjx1qnh6VVDpCpKjtFRa1p58Evjtb4GZM+NOUV9mzJBCnTYLPmNG3ClKD2G1azdtU2uPemuXPkiFHaNH5weSqKmxDxSTRpwI51aTRIsW5Z9nNj5YYVTCslkZlj6tk1DaVhQrVoS3RyAhEZOyVkpckwRLDxDPLNSYMTkLk4YTQSnKPHWq0GSzOUE6m5WCdNoG6bDRhICjjwZ+8IN402LFggWynIWQ7wsWUOENirDatZdJCS9C5o4d9sfF4BrlJN+sysM4HriJKqivO1pfnAaLSqE6s3y5fNdcQM3Op1WcJISU9YbENUmxIMQxC9Xa2ncN08SJhQUlFfNU717o1p2EJIdimq2NWsBXqV17ETKrq/MtTNXV+b8Xg2uUH+FcPx5oa5icoq87U6akp43a1ZnOTuC55+RnzR3PTYATQhSDClMxoQ9i4HbRatzEMQtVXp4epcLoPuLGnYQkh2KarS0GAd8KL0JmW5t0y9uxQypLbW35vxdSttNggfIjnPsZD/R5l83KtpmGNmqsM6+8Ij/39gIvvSSfVb9HoJsAJ4QoRsJ6O+KLJFsZOAvlDz/uJCQ5FFM7KSZrmhE3QqZeWJ8+XebVhg3A7bfnKz2FlG29grp8uXQrKytLlvIUl3BuDFVeX5+fd0ll7Nic2x0AXHihfC8pkb8Zow0W04QOSR0J6OFIYCTZysBZKH/4cSexQ5VZZ1XSETfF1E4ofDnDqOhoGK1yhZRtY7htbQKm2Kx7XjDmXVkZsGxZfOkJCm1dp8Yxx9ifX0wTOiR1FKFEUcQk0cpAQdg5dnkVlnuhKm5RqqSDRAeFL2dYbT5ttMqZKdtWrmTG62gR5JLWP2vPt3o1sG2b3GPuxBODd1dPi3JvHGP09SeTkZEX7SimCR2SOhLUsxHfhGVlCBMKws4xziS3tEgXnDCFGFXcolRJB4mONAtfQU4UGUNaazgR3K1cyfSR3gC5T928efKz3zKJcpLM+HxAOO7qaVHujePxxIk5Jbq6GhgwwN/1OUFKFIY1sZhIYhADCsLOMc4kb9sWnBBjhSozp6qkg5AgCHKiSC+sjxuXW8PkRHC3ciXTBNtFi6SyBATXP0c5SWZlfQvaXT1M5T4KJUNf3vrxuLRUltW6dcANN8i1S37gBClRGCpMRG0oCDvHbCY5bCVTlZlTVdJBSBAEOVHkR1i36n/119QE3KD65ygnyaysb0lwV9eIQskws8RlMsD48cHeixOkRGFcKUx33nkn7rzzTrT/714On/rUpzBnzhycddZZaG9vx8iRI03/99vf/hbnn3++6W8Z46LB/2XBggX43ve+l/fd/v37ceqpp2LTpk3YuHEjTjzxRDfJJ0mEgrBztLxpaZHWJSB8JVMVtyhV0kFIEEQxUeRkm4lC/W8Y/XOUk2Raes3WMBlR1V0sCiXDaImrqgKuuSaXf11dwEEHSQvTa68BtbXe1oBxgpQoTEYIM3u0OX/84x9RWlqKUaNGQQiBlpYW3Hrrrdi4cSOOPfZYfPDBB3nn//KXv8Stt96Kd955B4MGDTK95rvvvpt3/OSTT+Lyyy/HG2+8gdra2rzfrrnmGmzZsgVPPvmka4Vpz549qKysREdHByoqKhz/j5DE4WZgV1UIICSpaG3qlFOkQqIJf16uEWa7nDQpPwhQfb0aLtuq9klNTfnWtHnz1JikiSJdhe4xa5YsM+3zs8+6q0tama9ZI/dwKi2V1itVyp6kFle6gfDJ0KFDxa9+9SvT30488URx2WWXubreOeecIyZNmtTn+9bWVnHssceKV199VQAQGzdudHXdjo4OAUB0dHS4+h8hqaaxUYhMRghAvjc2xp0iQpJNY6MQhx8uxK5dQvT0CNHSEneKzKmqku1eew0YIERDg0x/d3fcqVOPhob8/GpoiDtFku5uWWZhll2hezz4oBAffihEZ6cQRx0l65YbOA6RmHCjG3hW3Xt6evDQQw/h3//+N8aOHdvn9xdffBEvvfQS7rjjDsfXfO+99/DEE0+gpaWlz/ff/OY38Yc//AEDBw50dK39+/dj//79B4737NnjOB2EFA30GSckWNatA95+W7p2TZ4MvPUWcOml+eeoYEUxbjPR2Smja6q42F6F/PLjLmaV/iCeKwp35EL3OOMMGSFv927gjTektdINHIdIAnDd47S1tWHs2LHo6urCoEGD8Pvf/x7HH398n/PuvvtuHHfccRg3bpzja7e0tGDw4MH4yle+cuA7IQS+/vWv48orr8Qpp5xyYP1UIX70ox+hsbHR8b0JsUWFATsM6DNOnJLWNhA0Wpt6803g3ntzkSr1qBANTL/NhBDArl3ye78Caxj1xGt+BZkWP+u1rNKvQj0Igqoq+f7001JZcrtlCcchkgTcmq/2798vtmzZIl544QUxc+ZMccghh4hXX30175wPP/xQVFZWittuu83VtY855hjxne98J++7RYsWidNOO01ks1khhBDbt2935JLX1dUlOjo6DrzeeustuuQR76TVZSAKdw6SDtLaBoLGSZuKwr3LTdueOzc/PXPner9vGPXEa36pUmet0q+qm19QOK2DHIdITITqknfQQQfhqKOOAgCcfPLJeP7557Fo0SL84he/OHDOww8/jA8//BCXGt0QbFi7di02b96MBx98MO/7p59+Ghs2bED//v3zvj/llFNw8cUX93Hf0+jfv3+f/5AUE/bsd1pdBhhdjjglbW3ASZQ4LzhpU1HMqLuxXhhjPzmPBdWXMOqJ2/yy2jdIn5awyt9N+pNkWfEyxjqtgxyHSALwLVH29vbmrRUCpDve2WefjY9//OOOr3P33Xfj5JNPxhjD/gc//elPcdNNNx04fvvtt3HmmWfiwQcfxKmnnuov8SReglRywnZtSNLARkgYpK0NTJ2aW8OzcqU8jipKXBTbJbhRXDZssD+2wkzpCKOeuM0vq32D9GmxK/+gJ+Cs0q/athl2z+1ljE3bJAspbtyYrmbOnClWr14ttm/fLl5++WUxc+ZMkclkxLJlyw6cs2XLFpHJZMSTTz5peo1jjjlGPPLII31MYgMHDhR33nlnwTQ4dckzwih5LonCRB6ku0TYrg10GShuWP7pywNjlDi3kb3CJIi8dtO/eu2L6+vz87C+Xo16YhwPqqr6psWu/FVx5Ysau+f2MsYWaz6SxBCaS97777+PSy+9FO+88w4qKytxwgkn4KmnnkJDQ8OBc+655x5UV1djypQpptfYvHkzOjo68r574IEHIITARRdd5FbfI2ERxWLUIGefwp79DtplgAvo3ePEhSasfE3L4mw/OGkDSarXxihxFRUy/SqkN4j65sZ64dXSsWlT32MV3KuM48E11/RNk7H8Ne+WbFZu/q2KZSTKNmU3JnsZY1WzoBHih/D1NzWghcklUSxGDXL2SYVZTTdw5s09ZrPZRsLK17Qvzg6KJNXrzk4hamryy1WV9Calvjlpk04Iuv92cr3OTpneqir53tkpv29szH+muOtFlG3K7l5JG2MJcUAk+zCRlBPFeoUgZ59UmNV0Qxp9u8OeCTWbzTYSVr6mbf1OWMRRr73Wu/JyYNQoQL9VhSrtUJX6Vihv9aHJNauvl2sGbcF1Mh6Ul5uvWTPWgdraeC0jUbYpuzE5aWMsIQFDhYmYE4UpPW0dsJuoS6oIRE5xIpSG7bZm5UKjx2m+uhWy6VrijDjqtZ96p2o7VKW+Fcpbo9KRzQJNTe77CZUmkIx1Yvr0eN00jekZN65wHjvFrB9M05hMSJBEYPFSArrkkdBx456SNPcGJ24hYbsRWbnQ6HGar0lyHUsScdRrP/Uuae3QDifP4vZ53eat135CpfaoWp0wpmfOnODyym2+69Py+uve7+sXN2WkWnkSpXCjG1BhIiQoVI665RcngpNKQk8hkrJGJAzSJkAkqd6FiTEf6uv7lrHbvHJ7vtd+Im11MkyC6ru6u4WorfWmEJeWCrF3r7f7CuFs8stJOpzUS/YPxAauYSIkDpy4jCUVJ65LqrgROUFVV6woSFvEPy/1zuu6pyg2O/WaNqNbm9YX6cvYreub27z12k+kzT07DLR6sXVr7rtMBhg71puLXnMzsG1b/neF+kGt/nzyk8DHPpYrZ7f43QPNTT1Wyd2TJBoqTIQEhZcF0EnBieCUJKEnScpd0KRNgPBS77wqjVFsdus1bXplRY++jN1OFLjN27T1Eyph3Iy3tlaur+rt9VZf3AS32L0bGDlSvgPApZd6U5Q0nATwscNNPS7myTESKFSYCAkKq6hLaSBtQk7anscNFCC8K41+BT0nOE2b0RI1Y0bu/9lsTrHTyjibBXp6pOALAJdcEvxEQTG3q7DR1wsAOPJImddTpniry8Z+YNo0a8umXlkCgC9/OXe//fvdW139emNEsccYIQaoMBFC1CBJm54mGb0AMWECMHNmvOmJA69KYxRut07TZmeJMmtLN90kXbf0sH2pi7EMx40zrxde67JRkbCzVOmVpaoqYPRo+TmT8WZ19euN4UYx15+bzcp2sHixPJ42DZg9m+2AOCIjhNF+n0727NmDyspKdHR0oKKiIu7kEEKMNDXlBuxMRn7mbDUphBdFOw1rmKZMAZYvzx03NADLlllf98gj89es1Nbmr4eJE6tnLuZJFGN/OHs2UFqab1FcsABYs0YqO6WlwPjx+XnkJv/s6tPQoTml6ctfBh55JHfewQcDO3fmjquqgH/9q+/1VSjLpiZg7tz87xobOc4UMW50gyLpeQghypO2tTUkGrys+fHqOhaF263TtKXJtdKqDM2+1za61QTv2bP9raeJGytFwtgfbtiQrxA7mWBy0jasgkno93u66irg5z8HOjqAiy/OD/ZgtLoKIf9nVIhUCDbz/PN9v+M4QxxChYkQogZpEgBJdBSrou12bca0afkuedOmObtPFJYBqzI0+14veG/YANx4o7SuJBUrRaJQf+ik3hvPWbRIftaXoVUwiZ6e/HTNmyf/t3+/TM+uXcDChcBjjwFnnw08+yzQ2Sm/nzcv9xxu0hs2V14pLWLLlwNvvy2/4zhDHEKFiRCiBlycS7xQrIq2WyuZ0aXLafuKwjJgVYZm3+sF7337gLPOsndFDIMglUgrRaJQf+ik3hsjJ+7c2VeZcRpMYv586f6n1YE//lEq4KWl0uqqd+kzU4hUaKdf+IJ8nXce8NJLctKA4wxxCBUmQogaMMJWslBhTQJARdspXttXFJYBqzLU3teulRYPbb1OJhOv4B2kEmmlSBQqLyf1/oorpKKTzea+M5ah8f6aK55xfVs2Cxx/fO5YC9TgNGS9Su30d7+L794ksVBhIoSQOFFF8XCLCmsSACrafilU/6KwDFiVofa9fr0OANTXy9/iEryDVCKdKhJm5VSo3o8cma8sAX3L0Hh/vSseAJSUSCUVkAFPurvld1qb1zbOXbsWmDhR/jZhQt/ncNpOk9ofktTDWkgIIXGiiuLhlqCERgpIhenpAVpagBUrgOOOk6Hgg4oiV6j+qWAZMLqNlZVF74anJ0gl0qki4aWf6Orq+522Fsnq/npXPACorJTrkg46SCqq/foBr7wilSgt4IY++IR2ralTvdXJpPaHJPVwVCKEkDhRYTG0F4ISGlUUkFQLc11aClx2mXwBwL//Le/75psy/PNPf+o97wrVPxUseCqsf9EThxLppZ8oL89XmsrLC5elMa+/8x15r8pKoH9/ec4f/yjDjJtF81u8GNi+3Vl7NmtPhZ6TEywkJljLCCHpJCkDq0rCoBByb5cVKwrnWVBCo4oKo5sw11EoE6++CgwcCBx+uBRaP/Yx+f2RR8pXSwvwxS9Ktyi3qFT/rFDByqXHiRIZdP/jpZzeegsYPlwqTeXl8rhQWseNk5ajDRty6d63D/j1r3PnP/VUrq0a0wU4b89m7anQc950k9w7CZBBJrQNdwkJGQWlB5I4kiKYkuJCRcuFGSoJgzffLMM0O8mzoCwPKgrsbsJcmxF0n/i73+Xq8iGHyIX8V14pldsPPgCWLpXn9fS4v7ZK9c8KFaxcbgm6//FSToccIkN9F8KY1nnz8l0eR47M1fXOTmD9+lxbNVsDNX++s/Zs1p70wSTMnnPx4r7HVJhIBFCqJf5JimBKigsVLRdmqCQMrlwZXJ45VRpUFNjdhLk2Q98nLl8uLUAjRuQviHejQBnz6BvfkMfLlklroEZJietHVar+pYmg+58wy8mY1lWr5GvTJrkxbWkpcNRR0g3vL3+RgR8aG3P1WJ+ubNZ5+Hqz9hT0c+7bB3z728COHVIZKy/nJC/xBGsI8U9SBNMoYEesDipaLsIiqHoXZJ45nUhRUWAvFOa6kDBoDFKwbZt8AXLPGsDdM1vl0YQJ8npaeU2YYP5/9kvRk6T+x5jW7duB9nb528qVwKWXSlfQ/v2Bhx4ChgwJxvLsZbLEzQbMr74KfOpT0p1w61Y5wXD22cDtt3OSl7iGPSbxT5IGhrChtU0dVLRchEVQ9S7IPEvyREqhMNeFMG4YqifIvHBaXuyXosdJ2aiiyBrTumhR/u9Tp+Y+r1olFaog8DJZ4mYD5smTgeuuA66+OrfeD5BR/pLaN5HYoMJE/FNMgmkhkiwkpg0VLRdhEVS9CzLPinkiResDW1pyliUNP3nhZS8eQI1+SRXlwAlBpNVJW1JFkTWmddUqaVkCZH0980z5+e23pbI0aFDkSTyAmz7q+OOB739fug9OnQqcc460SH360/FvfkwSh6K9FUkUxSSYFkI1ITFIISVJAk+xoVq9A9SZSImj3mp94qxZ8t5r18rF8FabejpNo1cBW4X6oYpy4ISo0qqCIqtHq4cAUFMD7NkDDBggXfAAGR1v/365V9OyZer3/62tUlHatAn417+Ar35Vfn/ddTJyYNx9E0kUitd2QhKGKkKiRpADf5IEnmJDtXoHqDOR4qXeBqVkBb0pqVcBW4X6oZpyYIeftLqpOyooshrZrFSENMsSIN3fstnc8ZIl8n3lSvmMKrRvO8rLc2sG9ajSN5FEQYWJkKBQ0QITpJCSJIGn2AhLAFCxTrvFS72NenLAaRq9CtgqCIgqKQeF8JNWN3VHBUVWo7k5X1kCgJ/9DHjiCfm5pwd44YXcb+z/SZGRsJGPEIVR0QITpJCSJIGHBIOKddotXupt1JMDTtOokoDtFrdpj1NZv/FG+e4lrVu3Oq87XhXZMPLGLJ2ZDPCZz8jPf/mLdNHTvmf/T4oMKkyEFMLp4KSiBSZIASvJwhrxhop12i1e6m3UkwNO06iCpcgrbtMep7JeWuo9rXrCqjvGvLngAuDYY/1d0xjZsb5e5oM21j36qHyvrQWmT2f/T4oOKkyEFMLpwK2iBSZIASvJwhrxhop12i1e6m3UkwNsW31JirKezcpoiHplqbZWhrCuqwNmzJD7BgVtDdLuN2mSf2UJMK/z994rN37t1w/43e/k75s3J8Mtt7cXuOUW6WaYVHdiohSsPYQUwunATQsM8Yqqa4WKrU7v2weMHg3s2AFUVwNtbfGGUC5mkqKsNzf3DR0/fXpOAW5qCt5Sps+buXP9XUvDTGk/6yxZ/3fuBP76V3mOVb+kWh9WUgJ85SvAI4/I/Ac4KUF8ocCITIjiOB24OUtMvKLqWqGw67RqQtbo0UB7u/zc3i6Pg9qkk7hDVWXdWGfXrs3/vbY2P61hWMq062cywPjxubEpaKqr5fuKFbJdvvWW9bmq9WEffAAccwywfr1UWpcsUaefIYmENYaQQqg6cJN8VBO+3ZAU96OgUU3I2rHD/phEh6oTUMY6O3Fi/iao06bl90PjxgVvKTPmTRjKUne3dMUDpAVt714ZptsKVfqw3buBkSNlnvz858CFFwLz5wOXXQYcfDCwerX8/r/+K570kcSSEGmCkBhRdeAm+agmfLshKe5HQaOKkAVIhXvQIClwaWgz7MQZXV25jULHjJEbh9oJ2UnEWGdLSmS/oylIvb35/dDs2fm/J2XC7bnngNNOk59/+lO5aa3ZnkYaxj5s7Njg1245YeTIXBu+6CJZB3/yE2lxGjkS+NKXgH//O/x0kNRBhYmQIEmylSPpqCR8u6VYrZgqKYrNzUBHR+54yBC5hikM0tpPnHkmsGaN/LxypTxevTreNAWBXhGsqMh9n8kAEybkT8xMmZLfD23YACxbFm16g+Ckk2T6X3kFePttmQdmaHV5zRppbSstlW6C2WxufdXy5TlFMmz0Ex4AsHgxcPTRwP/7f8DhhwO33148E1IkUFLQQxOiEEm2ciQdlYRvtxSrFVMlRVGvcANy/5mwAj6ktZ9Yv97+OKl85zuyrG69FbjySqCmBhg1yrzOJrkf0jNggHxfvly+jx5tfp6+Lmcy8vOcOTJKoJ7Fi8NXmLJZadHUK3dDhgAzZ0qFbd06qciPHSsVO0JcQIWJkCBRzcoR9Ey22+tFOZOukvBNnKGSohiFoKu1h0WL1OoniD11dUBjI3DEEdJatHy5tdXIbz+kmvXxT3+S7xMmmP+u0ph35535ylJ5uQzaolI/QxILFSZCgkS12cWgZ7LdXi/KmXQOiukhDqExCoXbbINTFfqJoDjttHwXPG0NTNLYt0+632npv+ACYOFCWSeuugp4/33r//rth+K2PmazwD//CXziE8BHH+WiAD77bP45WvvMZnPfZzLAqafKvaHefjv/utOm9f1v0G37wgvlvlea0jR+vLQw2aGN1V/9qowGuH27+X/8pls1RZi4hqVFSJCoZuUIevbP7fVUmn0kySEOoTEKhdvo9ldVJYMjrFkjF8hHJURpkcR275bCoZWQ6JY//alv0AenqCRQjh4tXTI1hWngQOCQQ2QaTz8dePLJ8O4dd5+5YAFwxRUyKt7GjVL5MCr1Rje8+npZVnV10uVt1arcuUOHAtdemxsLw2zby5YB+/fLz04nIm69VSpZP/0pcNxxsl3s2tX3PL/pjlsRJr6hwkRIkKhm5Qja4uX2eqpZ3EgyiFtoDAtjexgzRgqXQuQikEXRf+gjiWnKk5mQ6JbycvtIanYEJVAGEalvxw7gX/+SFpaDDpLfXXFF7vf+/d2nyylx9pnZrLSeHXKIPH7oIanUX3ON/d5SZWU5F8VFi/Kvmcnkl2OYbfs//gPYujVf6S6kiM+ZA5xzjtyz6ZZbpAXRDL/pTmufVkRQYSIkzQRt8XJ7PdUsbiQZpFXRNraHNWviEaKMkcSMx3EQlEA5daq0cgDyfepUcyXOTpCurpYbFz/0EHDxxd7S4ZU4+8zmZuDkk3PHK1ZIZcmouNq1zzFjcvmvHTv9byEKKT9mE5ZNTfaK+IABwLe+JScurrwSeOEF83v77ZPS2qcVE6JI6OjoEABER0dH3EkhhJBk0dkpRH29EFVV8r2zM/dbd7cQjY1CNDTI9+5u82s4Pc/tuUmmsVGITEYIQL43NkZz3yFD5D2115Ah0dzXjqDyoqoq/9mqqtzfb+9eIWpqhBg/3lsaksoZZwjxz3/Kz++/L0RtrXnbs2ufdn1Fof/a0d0tr6eVq9M60tCQXx8aGvJ/37VL1v+bb5bHvb3W9/fTJxVLn5Yw3OgGtDARQkix4HWdiN2svVNXqmL24bfK97isCdu3913DFDdB5UUhC4eGnUVr0CDneaLS2iu/aRk0CDj4YPn5T38CRoww/7+d63kht0yvbuvNzfnl6tQKWciyM2RIvjtqJmN+Hb/u9qq56xPXUGEihJBiwavSsmmT9bFTVyo3LldJUa6crpexep64hCijkKgCQeVFa2vhwBPZbH50N8C7i5RKddVPWrJZuVktIPcsWroUKCnxlg47xc2rUmfWXzgpM7qFk4CgwkQIIcWC13UidrP2Tn3z3fjwJ2WBtNP1Mkl5njTgJPBEc3N+JLf6eu+CtEpl6yctzc0yAqDGc8/J9UtesFPcvCp1dXW5TXQB52VGyw4JCCpMhISFSq4ahADeFx7bzdo7ncF1M9OblAXSdpY3PUl5nmLBGN69rMx73/zVr6pTtn7q2fPPAzfcID+3tUkrZBhKpFelzqz/sLJazZghw6Nz7CUBwhpESFio5KpBCODdPcVu1t7pDK6bmd6kuNE4XS/j9Hk4yRINQSqw3/gG8O67atRVP+3mwguBfv3k58ceA6ZP91737PLXa97b9R/GsXbVqly4/qDH3iDC1pNEkhFCP82SXvbs2YPKykp0dHSgoqIi7uSQYmDKlHwXgoaG3F4VhJDkE7TwpA+BnMnIz5xkCZ4kK6Zhpb2nR65dKi0FfvUr4LLLzK/rZH3S2rXyeiUlwIQJwHXXAWefLdvJ6NHyu2efDSb9XV3A4Yfnr8mrqgJ27swdBzn2TpqUP0lSX+997zESO250g4T0EIQkELrhEJJu/GzUakbc62GSrEi4IcnrWsLyXCgtlS8gf5NeIzfdBDQ2ys/Ll0sla968vmnTK/x6JWP1aqlIBdVupk7tG8BEvyG03djrpb47dcP1ex+iHCwxQsIiKW5FJHo4gLpHhTwLOw1uJ1mCTo9TYVyFsogS7XlPOUUK6HFSSKnWl824cfKcDRuCK6fFi/seawqTVdrcKhlW9cvse+O1BgyQll7jGiYz7JQ/K+zccK3STff8dBD6rlCKwI1riS3cVI5ESVwbliYZFfIs7DSY9UN2fVPQ6Sm0yWdY91WduXPlsx56qBA9PdHe21j+c+bY572+bPQv7dxCG8sWorY2/7q1teb3zmRkvjU2CjF0aP5/6uu91Wuz7/Wb2WrXDuJZrLDLP6t0O21XJHK4cS0hbuEMEImSuF2v4sDNrLHZLLgKeRZ2GsxcxfTrmox9U9DpcWrhUqEsokSzqrz3HrBmDTBxYnT3No5Nc+bIYyvriTECoIZWTqtWOQuFr0ffRocPB7Zty/02bVrus9Groqcnl3ZAWn8+9zlpAbIbc63ql9n3TvbdChI7N1yrdNM9PxVQYSIEKD4BgMRLMQ6gVgKS08kKFfIsjjTY9U1Bp8epG7EKZREmRiVez3/9l/w+quBRxvJfv94+gIG+bPRo5bRoUf73bW2F02Bcm1RfL5X7sWPl8ZQpufqib7tTpuSno64ul3bjc61eLdc6bdqUn7f6+mVW7/ysI5w2TU5I6I/9YEzf88/LyIPV1TJk+/PP0z0/wVBhIgRIvwBA1EKl9W1RrUdxOmvc0mKeFhXyrFAawshLu74p6DxxGgxBhbIIE6MSP2FCzqrS1gbs2AEcf3w0aXE7NmllsXq1TPO770rLztVXy9/0FiYAOP/8wmkwttGyMqn42Fk/zdI+bpz8z7p1sq1kMrnftm0D2tvl/3buBGpqgFGj8uuXXb1z0vaM59xwgwx0EVQ91qfv+eeB3bvlcXs7sHQpsH27v+uTeInARVAJuIaJ2MI1TEQloqyPUa1HcbIuwWzNhZGo8sbLffzmpds1TCQcjGtOJk+W63Fqa+XrN7+JLi1ey99qbY9xDc5HHxW+t36tj1avu7v7rgEyrs2xW3+lpUn7zbjOqarKXT45aXtRrr0rK8t/nrKy8O5FPONGN6DCRAghqhHlwB7VgmQrwU//fSEBTIi+ebNoUTjp9VIGfvMyrcEUkqb0mZWD/rt+/YTYty/uVNpTVVVYAensFOJvf5Ofs9m+ASCMkxm1tbnya2zsO8lRqL7atQ83wRv27hWipkYqITU18thJ24uir9Pyprw8/141NcHfi/jGjW5QEq99ixBCSB+iXFNXVyddYoBw3VE1d69ly+S75i6j/3769MJp0efNGWcAX/96OOl1Er65qUmu02hqksd+81KltZRmz+cVzcVt+XL53twcVCrDYdYsmc6GBvk+a1Z+2XR3A089FWcKC6MPd212DADnngsccgiwd690ITOGTDcGkDjyyFzbNdbN2trCLm127aO1Va6NqqqS73bBG0aPlm5u2ax8Hz3aWduLoq/T6npXlzwuKZHuhU7WihGl4RomQghRjSjX1Km0HsUqLfq1B9rahxtuAObPlwJJGBQqA7NgFX7zMqhyD2ItVZCRQ1VSBJ1gtparrk4qfBp/+hPwla9Emy43OIke94lPAEOHys+//33fPY3s6qPxt699TSrX+vuVl+dfz659uAnesGNH32Oza3d15efBY49Z3z8ojErm5Mn2QTpIcojA4qUEdMkjhARCFO5FSXNhChu9a1BlpRBr1+Z+C2tfnEJlYHTvKSvztq+Nm3s6/a/evcmra1+Q7ktpcDXs7u6br++9F3eq/PHEE7nPY8b0dYMz1sfOztzx3LlyTZL228SJfV3qwurHamqcubs5Xcflp80aSUNdLyK4hskEKkyEeGDt2vwBRy+oFituBkSVAxQkCb3wfuedzv7z738L8Z//GV5+WAWrcLNxZhTp8arsBCn4paV+GpXI++6LO0X+6O2V73/7mxCTJhVWHOzqhNmaKS91yEldMVvDZIbVOi4/m916SX9a6n8KocJkAhUmQjxgJnwVO25m3uOOQOcHp4N8FMKA/vkOPliI9nb7899+OzcLHVa+Gy0Odovro8BYL/1amFQV8uJMl7Gd3XFHdPf2QtCWFLdBG7xYKYPoy7Q6Yoy8pylGTgJiBMnf/ibE174m7zVsmBDvvhvu/Yhj3OgGXMNECCFucLPOJKq1G2Hcx+kaliDXulhhXJ9wxBH253/zm7k9XbzmR6F1QGVl5uuCzBbXR4GxXk6cKNPnda2G0z2ZoiaK+mbFrFlAby+weLE8fu+9XH6ryNSpuT2XVq6Ux142edXawtatue/MgjYY10wtWOBuTV42K/dh89uX6esIIPeh+tzncuu4xozJ34sq7DY7apTcB6t/f+DLXwYOPTTc+5FQoMJECCFucLOwP6rgDWHcx6kSFoVS6FZ4/+xnpXDkJz+cCObGQAA1NfbRvcLErF6GsQGxnqg2PdYTZwCJsjIZZGT7dnnv+fOlYlpfH10a3GAM4mA8dopRAamtlREtCwVtcBsEpbk5t0Gwxtixuc1undYxJq0D0QAAPddJREFUY+CFurr8wAtOAmIEyUcfAR98ANxzD/A//wPs3y+VJ5IoqDARQqxZuxYYPz7/2ApjRCKzKElpwI3wHlUEujDu41QJizKin1OCyA8ngnkcSooVcViE4rD2xF3fjPViyRJ1FSYrS0o2m6unW7cCI0bY11ur8OKFMNZJLVS9VXsxC1WeybivY4XqiJuIfEFQUgKccw7Q0wO8/jpw8sny+54eqUg9+ijw/vsy8mdc/QcpCEuGEGJNXV3+QGlHUO4faSIqITaM+zhVOlQKS64RRH6YCV1mFhUV3daiIg5rT9z1TV8vAOD++2Uajjwy2nQ4wcqSsmFDbiJs7lzg6KPt63FQSmohBdt4n+nTvdWxuOuIEU0JKi3N3zeuo0OGdv/CF4Djj5fPV8z9ieJQYSKEBENQ7h9EDZwqHX6VkzjcupxgJnQ1N0sBE5CueKtWSVcfFdIbB3FYe+JeW6XVi4ULgV27gM5O4N57gZtuii9NVlhZUo4/Hti9W1o+/vAHYNw4++sEpYAUUn709xk7Vq4Xs1s3ZUXcdcQpv/ud3DD43Xelwr1+fdwpIjZkhHA6fZxs9uzZg8rKSnR0dKCioiLu5BCSPiZNynf/qK+nhYkUpqkpN+usud+oKuxMmZK/ZgkAGhvVTW/YqKrsRsHBBwM7d8rPo0YBf/tbvOnxwv33AxdfHF2bM7b1OXOk0mZWf/TnAvnrptJSx559Viqrhx0mXfW6uoBhw+JOVVHhRjdISa0jhLgijPVGUS+kJenAicuNV8E8aIHeGORBS38YJEEZScpMfhjo1wdt2SIF3uOOizdNbnntNamUROWyZrRU9fRYu+h5XTeVJE45RT7/vn3AQQcBnMxXGsV6X0JIJEyZkgvgsHKlPF6zJv8cM4GtqwsYPRrYsQOorgba2oBBg+T5US+kJenAiVuX1+ACQQclmDVLuuFpgrIXNzSnilCc4bOLCa+KaWurVJC08PX33y+tIkli/nx35/tV4o0K9pQp1pMlcQf3iIJinnBIIFSYCClGjNHuzKLfmQls996bExDa26XytH17iAklqcfJ+givwQWM/1uzxn2IYj1lZXLNklFodINTRSjO8NnFhFfFtLxcuuJp/eHDDydPYXJL0Eq8nVJk7BdmzPDXdgnxCWsbIcQcM4Ftx478c4zHhLjFySyr19lm4/96e/0LfH5nhZ0qQsUww64CfhRTfRn99a8yRPTHPx5OOlUgaCXebrLE2M70a5r8KGtJcHUlSsJaQkgxUlkpQ5rqj42YCWxbtuRmVAHplhclHOyKE69Ruoz/W7s2fquNU0VItdDIacWPYjprllyHs2SJPH7tNeD008NJpwoErcS7mXwISlmjqyvxCCUNQoqR9nZg5EgZWnbIEHO3OjOB7brr+q5hihIOdsWJV6uO2Sz1ihXOBL6wlHOnilBY6xs46ZCPH8W0rEzurbN9u6xTF18M3HgjcNVV4aQ1buJU4oNS1ujqSjxSxL0kIUXMkCFyDxE7zAS2QYPiXbPEwY74wY3AF5ZyHvdC70LPlTSFKuhABG7R90n/+Afw+9+nV2GKs+4GpazR1ZV4ROFekBASGGGEEY8DDnbELXqBetIk4Ac/kHu/FCKtyrnVc2n51NICbNsmv0uCFTduqzP7pGgISlmjqyvxCBUmQoqBqVNzoZBXrpTHSQwBzsHOnMcfB770pdzx5s3A0UfHlx6V0AvUZ56ZU5Z6eoCbbwZWrza3TJgJwkmzvphhJeDr80kjCYpi3IptGvsku3qe9DYQt4WXJJYE1XJCiGc2bbI/Tgoc7MzRK0sA8JOfAHfeGU9aVEMvUN9zD3DGGdLKWloKfPWrcgJh3jz5+4wZOUvsCSfI9Sj/8z85wdCNNUNVwdJKwDduFAokw2ISt4UnjX2SXT2P26JHSEwo0HsTQkJHvyu9dkzSy/79cafAHrfKhB/lQy9Qv/468Oijsv7v3Akcc4z87be/Bf7wh3xL7KpVUgDXW2LdWDNUFSytBHx9PgFAbS0wfXq8FhMn5Z5GC0/c2NVzN21A1UkDQjzAmktIMdDa2ncNEymM27VfqggIgwZFf083uFUm/CgfVgL1XXcBAwYAV18NXHABcO65wE03ydDj2aw8x2iJdWPNiNtVzC1m+RS3cOuk3FWx8KjS9oPArp67aQOqThoQ4oGEtmZCiCvKy5O5ZilujGu/Dj8cuPZaa2EoLgHhj3/Md8u77rrw7+kHt8qEH+XDSqD+7/+W5XX11dL1bvhwGXb83XelMgX0tcS6sWbE7SrmFlUUDz1JUjqTohz4tdq5aQNJKj9CCkCFiRBCrDBaGHbtMl/volmf4hIQvvjFvutP4sKJVc6tMhGG8mFUEHp6gDfflK55AwYAp57a1xLrRqmgq5h/wlY6g7QKJUU58Gu1c9MGkjZpQIgNVJgIIcQK49ovICcMrVrVN/LgxIkUEJxEZHSrTEShfPzwhzlBMpMB6uv9hd5X0WKTNMIu9yCtQnV1wPLlueNsVr5Uc8sLSrHzY6lKk/siKRpYQwkhxApt7dezzwKdnfI7TRFatCj/3E2bgPHjgZEj5fEllxSnVcFJREa3ykQUykdSLARWqCqE+klX2OUeZJnPmpU/ibJqlXzuOXNkEJYTTwTeeAOorgba2uJbZxiU1cePpSop7ouE6FCgNyWEEIUwCnjLlsnvjUKfXjgCgIoKYP78nAC2eLHc80cVwTUqVIjIaCakA32/y2Zz7oMVFbn/J9E6qKoQqmq6gGBdxsrK8tu5XgE79ligvV1+bm8HRo8Gtm/3fi8/BGW186NsJn1yghQlRTSKE0KIA6wEPKOQ99hjUvDZsUPOGtfU5IQiANi2TV6np0fu+bNuHTBunLzuM88Avb3y+/Hj06VUqRCR0awMgb7f6ZXenTtlGY4alcw1R6oKoaqmCwje5c9KAduxI/8843GUBGW186Nscm0TSSApGaEJSRiqus8QYPXqfAFv9Wrz826/XQYJEEK+jxwpB3998AUhgCVL5GyyEPlrHDRWrJDvqsy6+0UfkTGuem4lpOu/W7NGulrq2bMnZ1F0S9xtWlUh1Li/k0pre4J2+Zs1S06ELF4sj3t65LNWV+dPplRXB3fPuPCjbDIgCkkgCvRYhBQhKrupFDvbttkfaxiF8pISWaYtLbn/ZDK5363QBPq4Be4wiKOeawK5Hk150CusW7fm1qVp+HEfjLtNqyqEGt1XV67Mre1JG2Vlsh/QJkjmz5dW5La2fGt0W1vcKfWPH2WTAVFIAimJOwGEFCUqu6kUOx0d9scadXU5hSiTASZMkELA5s1AYyPQ0CAF6EsuyZ1nhmYN0ATu5cvle3NzAA8TM3HU8+ZmKaBrDB0qZ/pnzJCR7zT0M/7aeX7cB43P2tICTJki93YyKnBhoAmhy5bJd1WUbePaHiAd/V02K8vWWMZmdX7QIGDLFmD2bOnyefvt0dQJQkhgKNKjElJkqOo+Q2Q0K33QghNPND/PakbfOHuazcpZ50JrmKZOtVYukmp98lvPvTy3XmAF5N5Z2ky/1X8zGbkhsZ8w4kbXs23b5Gv5cqmwNTZ6v3bSSWN/Z2VRtHrWuC2QhBBfJGDEJSSFqOo+Q5wHLXDqVuL0PDuhMqnCltN6bqUYeXluo+IC5BRQ42/19fI+QbRB/bO+8IJU1DSWLCluhSmN/Z2V9dTqWaOwtmazwIYNchIGyAWcIYT4hgoTIXFAH2510QctiBI7obKQsJXNAnfcAZx2GnDKKdGk1y29vdLSs2FDX2uRlWLkRcjU8s24lqyuTrrlrVqVrwybWZW8WLb0bfrII/MVpt5eYNKkwvdNK2ns76wmOKyeNQorW3Mz8B//IT/39AA/+Qlw/fXB34eQYkQUCR0dHQKA6OjoiDsphFjT3S1EY6MQDQ3yvbs77hSRIDErXydl3tgoRCYjBCDfGxutfz/nHCE2bnSWnltuEaK2Vr7mzHFX39ymW/8yPkNDQ/7vDQ3Onttt+pxez899hRBi7tz856mpyT+ur3d3vSSR9j5Me77Jk2U5nnGGs+eMIl+uvlqI3l4hPvpIiL/8JdeOgibtZUyKBje6ARUmQlTCr6BGosMoNHR2elN8nJR5IQHFSuGw48knhSgvz/+fm/rmJN3GdFml0epaQQtmTvPJS37qMaa7qir/egMGpFfYTHsfpvLzvfBC7vPdd4eXNpXzgBAXuNEN6JJHiEowel70eA2oYHQjW7VKvuzW2zjZH8iszAu5NHlx97n9dqCrq2/6nOKkrpqtJwL6ptFpAA2/WOWTsQ6MG+fPfcqYbn1YbUCGM1++PFnr0ZwSRB+mcpAT4/OtXSuj5KmQ1pNOyqVrzx6Zlq6uvmsy/bqDcpwiRYgiPRAhBEA6o0lZoYpQ5DWgglFo2LTJnQKhL1+/ZW6mcBTK37q6vhvpurm3k7qqT5cWIVC/hkkj7DUuWl6sXQtMnCijFk6YkEuDsQ7Mni2PgwpSoA8kIkRufZO2ga4qAncQBNGHqRTkxNiOxo7NnwR48cVcGuNMqz7Aw86dwHe+I+vRlCn5e2BNnep/jWYxjVOEaERg8VICuuSRRFBMvuGquHV4db8ypr++3ptrXVhlXih/u7vlWpsw1zBFRaG0FMoLvy54bvBSb5JEEPUiyvIohLG85s6V39XWFnY1jZIXXsjl9cyZuXpkdAetqvJ/L5XaPiE+oEseIUklKdGkgrAOqeLW4XW21GjVmTEDWLDA3iphVb5hlHmh/C0rk7P48+Z5u75KddXOIrFvH/CjH9nnRZQz5sZ6s3atGu0gKIKoFypZMIztaP16uTnwunW5KIwacab1uONk3v/rX8DNN8uNswHphqd3Bx0zxn//rVLbJyQiqDARQtwThMuMKkKR1z1izISGoIUIP4KNKvkbBIXywU45HD2671otY15EuU+Qsd40NQErVqSjnIJCpX2brNqRcX1ebS0wfXp8aR04UL4vWZKfTrN95VRyeSQkIVBhIoS4x6l1yE7QVUUo8jtbGuZaLD+CjZP8VWUdWSEK5YOdcrhjR/61SkpyeWF8/tZWf8/vJT9VaQcqoZIFw6p8zL6Pou0UqmNbtsi2oqXPbF85Vaz7hCSJCFwElYBrmAgJkKj2s0kCYT5j2Gs5klI+hfLBbk2FcQ+kmprcb42N+b/V1/tbjxF0fnKtCDFirGNNTf6voWq7JyRkuIaJEBIuTmfFi2EmM8xnDNutLsi0h2mtKpQPdhaJtjbplrdjB1BdLY81jM+7cqV8Bq/WjaDrAl2niBFjHevpyf22Zo2MRmnW7vTtc9w4GQnSLGIlIcQUKkyEEPc4dZlJ0zoaK8J8xrDdtYJMe1jCfTYrhcKRI+XxJZe4y4dBg4Dt281/Mwut3tLiXekLui4Uw4QDsafQHmGf/3zu3K9/Xb7M2p2xfc6bJ4NXEEIcQYWJEBIexbA+I4xnDHptjRVO075vX18rzaBB+eeEJdw3NwPz5+cExJKS4PJi1qy+m8pu2yZfXpS+oOtCMUw4EHvs9gibPBn4zGfkeRs3yokBq3YXVPt0a0l20ncQkgCoMBGiKklZkG+HSou3wyKMZ4zKFctp2kePBtrb5ef2dnlstNqEJdyHaWUpK5Oz7Fo727o1FypaCPfWpqDrQjFMOHglDf2jE4z1f8MGc8vQXXfZt7ug2qfbvslJ30FIAkhh70JISvjd74CnngL+8heuX8hmpZVhyRJ5fMklwMyZffc9SovApJorljHSXHs7MGmStHyVl8vvwhLunQp6XV19wydrabNDr+Q0NeWEQcCftSkIimHCwSvFsr6rUP0XAujuBt5+Oz86npGg2qfbvunvf7c/JiQhpES6ICSBFJoh/Y//kK+zzwb++Mf4heY4aW6WwqxGY6Nc4LxqVToFJtVcsaqrc7PEGitXSgVFC1kclnDvVNCbOjXnWmdMm5d7Ga1Nxdz+VCToSQWvCnfY2NV/rX94/XXgpJPsJ438tM+uLuDMM+WmvfogE3Z9kza+GTnoIG9pICRu3ITf+/nPfy5Gjx4tBg8eLAYPHiw+97nPidbWViGEENu3bxcATF+//e1vLa9p9Z8FCxYcuO5ll10mampqRHl5uaitrRVz5swR+/fvd5N0hhUn6mEM7dre3vec3l4hTjuNoV+NYaUBIaqqwg25HSeqhZPeu7dveG6tDFTBWB/8po2hl9XGafk4bUv19X1DzKtKd7cQa9bkji+6KNw6aswbQIihQ+3zU18++tesWeGkkRAPhBZWvLq6GjfffDNGjRoFIQRaWlpwzjnnYOPGjTj22GPxzjvv5J3/y1/+ErfeeivOOussy2sa//Pkk0/i8ssvx3nnnQcA+Otf/4re3l784he/wFFHHYVXXnkF3/zmN/Hvf/8bt912m5vkE6IWxhnS994DRozI/a7N0A0caO9qoSJBry8wi2Y2ZkzOwqSCFSZIonLFclJO2Sxw++3AqFHyWG9pGjMm/DQ6ZcyY/OANftPG9UNqY1U+xjrd05MLGmJnid60yf5YJZqbpVsyIK0/jz4arhXULC8yGfs+Sj++AUBVFXDNNWxHJLn41c6GDh0qfvWrX5n+duKJJ4rLLrvM1fXOOeccMWnSJNtzFixYIEaOHOnqurQwEeUwzpAuWhTs9eO0UoSxgeecOULU1srX3LlCdHaqZYVxgyoWJCflZJwprqmR1pv6elkGcaPl5aRJMm1DhwaTtkJlpEoZFjvGcpgzJ79O19Y6s0RrVpRMRoiTTxbi/POjfQ43fOtbQmSzQnR0CPG734VnBbWyLANCTJgg88yqL6CFliQAN7qBZ4Upm82K+++/Xxx00EHi1Vdf7fP7Cy+8IACIZ555xvE13333XVFWViZ+85vf2J534403ipNPPtn2nK6uLtHR0XHg9dZbb1FhImrhR+By8t84ByyjC12Y7nJu81EFQVcVYcJJOUVZll4IKy8LXTfqMtTq7cKFUlAmEmM5GBWkoUNzn+3KqbNTiClThNi6VR739kb3DG557rnc589/Xj5zGH2ZmbJUViaVpQkT7F0YVehnCSlAqArTyy+/LD72sY+J0tJSUVlZKZ544gnT86666ipx3HHHubr2LbfcIoYOHSo6bWYGt2zZIioqKsQvf/lL22vNnTvXdG0UFSaSCgoJa93dzmdW40hfnPdSQVlRRQlxa2GKOr8KCV2dnfkCcZB5WaiMoi5DfTmUlgpRYGKxaDCWQ22t+doZTahPg+CuKXOdnUL88IfhTRKVlfVVljSCXjNISAyEtoYJAI455hi89NJL6OjowMMPP4zp06dj9erVOP744w+c09nZiaVLl2L27Nmurn3PPffg4osvRrlFZJp//OMf+PznP4/zzz8f3/zmN22vdcMNN+C66647cLxnzx4MHz7cVXoIUZZCEaKam3MRvjSiXOMT5foPt9GyVAjZ7TcKXjYr12+dcQbw0kvApz/tbY2Yk3KKcy1PodDRU6cCu3bl/yeoel6ojKKOZKivtz09wH33AV/7Wrj3TALGcrjkErm5sTHSISDbSBq2Hshk5Ht5ubP2aNWOCq1hNEbHrK7OfXa6ZpAb15K04Fc7mzx5srjiiivyvvv1r38t+vXrJ95//33H11mzZo0AIF566SXT3//xj3+IUaNGiUsuuUT09PS4TifXMJFUUWjW32zWNQ0zq2Yk0cLk112lsVGIGTPk5/vuy10jbS4whaw4xlnuAQO8PXdnZ9/1GKqtYVKh3qqIXTkwzyRW7ahQ/mhrmMrK5PuuXbm8nj1biNNPz7WZvXvNy8Ho1jdkSLr6KJJoIlnDpFFfXy+mT5+e993pp58uzjvvPFfXmT59uuW6pB07dohRo0aJCy+8UGSzWU/ppMJEUoWZkKD/Th8GNu2CQhRrmMwE6qDS5SU9DQ1CXH+9/NzSkvtvEoVDPwJvUKGgkxBSOo0KcdiEnWdJKROrduTWrdSuPVr9ZnTrK5ZxiSSC0BSmmTNnitWrV4vt27eLl19+WcycOVNkMhmxbNmyA+ds2bJFZDIZ8eSTT5pe45hjjhGPPPJInwQPHDhQ3HnnnX3O37FjhzjqqKPE5MmTxY4dO8Q777xz4OUGKkwk9RgHrPp6ISZPlu9nnOF/QE+KcBAGXgRqpwqMF0WnsVGI//5v+fnXv86ViwrroowUqjd2z+9kDZNbRdYMVdZjFHMbSyIqTFLY1RnttzPOyI0H+nPcpt+uj7H6zSrKnkp9FClaQlvD9P777+PSSy/FO++8g8rKSpxwwgl46qmn0NDQcOCce+65B9XV1ZgyZYrpNTZv3oyOjo687x544AEIIXDRRRf1OX/58uV444038MYbb6Ba7z8r3QndJJ+QdGNcm1NWJv3SNd/1FSvkb1739ym0niTNeNmjxelaKS9rqmbNAlpbgX/8AzjqKOCii2T5+F1TE/T+WUDhemP3/IX2oyovB55+2l/6gOD3cPJKMbcxO8Kol0GgwnpIuzqj/y2TkZ/19WnWLLkebskSedzbK/PaKm+N68U+9zlg0iTZH1ZUyO+M/U9bW24N06BBwO7d8vu07Z1H0k/o6psi0MJEUo/ZbGGQVge310rTbLlqFiYzgshvN2lxer9C9SboWXovVqegLFV+UdVKGDcqWHLM0KdL6xfC7u96e4W47TZ5H21vOrdWH6tncNvmTz89//o1NfbPn6YxgaSCUKPkEUIUxSyaWRBWBw3j7OKFF9qfn6bZ8tZWGZFt0yZpfWhtLfwfp9HlgopCV8ga4wQ3M+ZOy7dQNLmgo/BNnZqzFq1cCRx3HLBli71FIihLlV+ijryXFFSw5Jihr7ta5Mqw+7uWFuB735P3Wb687+/6OuOkPrnJW2Mfs2hR/u979gDLljn/PyEJggoTIWnBbDAKUhg1XuvrX7c/X1UhxwteBGqnwoFKQoQbgd1p+Raqg0E/v9Fdsr1dKneq5LEdcYZwVxlVFUl93Z0yJZr+bunS3H2M1Nbm1xkn9Umft4BU/Ozc8vSo4spKSARQYSIkzXgVRq3WDLi5lqpCDrHGjcDutHzN6k2Ya1KMQhwArF0LNDWptwbGiErKs0oEpUiGWe+i6u/q6swtS5kMMH16/vM4qU+zZknLmN4q63SCwYvlnZCEouCIQQiJnSDc6Ypxtryrq68AYbERt5K4Edj9lG+Y7pqtrdINT7/hZk9PetxDi5GgFMkw612Y/V1vL/CLXwC//z0wbhwwYgTw5pu534cOBa691ts9zTbzdWodU8WVlZAIoMJECOlLEO50xThbblw/M3VqugSKoGbojfWrpSW4Wf/ycrlmSZ/ONWvy77dwoVx/EYdS6ycPVY0WlxTCdBO26+/8ltuddwL/+Z85Rc9YXzMZf30tvQEIKQh7WkKSQKEBN2hBigNoDjd5/+yz+f/V1tM4LR/VBeKgZuiN6ya2bZMv4zWtLHaF8skovDY1ScVVu9+uXfLdiVIbdJn4ycM0BVKJCn35ZbO57/X9Wtjtzm+5PfpovqJXXg50duZ+97t2qBi9AQhxSwRR+5SAYcVJoikU+jXo0NRWG94aw8L29vp7riTgJu+NLy38eNQhxsMiqLDX+npkFxbZKpy723zS32/AgPxrFtqkNugy8ZOHDDvuHrMNvY1hrcNud37LzZi+2bPzw+Dv3Zur3/ffL0Q2G2z6CUkpDCtOSNoo5EoSlKtJoY0OjTOlN9wA9Ovn7V5JwU3eA3I9QSaTvwjazya2KlmdgrI86i1ATU35dU5/TasNg9269OnvN2mSu8heQbtx+clDWn7dY7ahtzH0ddgRPY3lNnasuyAkZhYg/fn6NvTnPwN/+xstj4QEDBUmQpJAIUEpKEHKrWL2z38Chx3m7V5GVFIM9LjJe0AqTNOn56ffafmYnaeSG1YYrjt217QKW+zUpU9DX7dOO03+7+WXnUX2ClpJ8ZOHdJ1yj5PyC1sRNZZbb2+uTS9fLqPULVtm3d8VWg+api0cCFEUBaQRQkhBCglKQQlSbhWz998PTmFSSTHQ4zTvW1pygvu8efI7Lf1+NrGdOlUdYSiMQB7aNTWlZupUGQlMq2M1NUBHB3DiiTnlRp9PW7fKPAes88dYt+bN6xt63IqglRQ/eViMgVT84qT8wlZEjeWm37MJkHXxJz+RG9J6QVXLo6qTYIR4IQIXQSXgGiZCHGBco6T5+Jv9PmuWENOnC/HQQ0L85jdC7N/v795JX58RVvpVX9cUFD/+sflasELP7CR/kl63SLpobOxbz1es8H69Qv12XBRL30USC9cwEUK8UWgGW//7yJFyr5uWFnl8443A9u3e763qLKlTwkp/sbhhPfNM/qy7RiGrmpP8SXrdIunCuFns2WfLtXVeUdXySFdBkiKoMBFCvLFjh/2xW5KuGISVflWFoaAZM0ZuzGmmNNkpOE7yJ+l1i6QLLfBEczPw0ku5Sae0wYkKkiIyQpiNTuljz549qKysREdHByoqKuJODiHR4saX3Om5moVJo6bGn4XJS1qDgH72apDNAjfdBDQ29v1t4sT8IA1hbTTLukCCpNjrU7E/P1EeN7oBay4hxYCbgApOz21rA0aPlpal6mp5HHVak3i/pBGV0FNWBpSUmH+/apX8vHIlcPjhwLXXhpMO1gUSJMVen4rFOk6KAipMhBQDbnzJnZ47aFAwFiWv94/6fsU6W+pF6POaV8a8LyuT9Wz37tx3u3b1jULoFWM616xxXveKtT4kjTjLiWt4CEkNJtN5hJDUUVcnfciBwr7kbs7V6OqSi5YPPli+d3VFk9Yg0N8PkGGqm5qkoKVHUxyWL5fvzc3hpksVvAh9XvPKWBaf/CQwZEjf84SQyk1TkwzRbFZeTjCms7fXed0r1vqQNMzKKcj+yo6o+zJCSGhwOoyQYsDNovcbbwQ+9Slgwwagtha44orC1586NRfxaeVKefz00+GnNQic7KOkpacYZ4u9LNy2yyu7GX+zstD2YnrvPaCzU/6eyeRv/qm3fLmxKBjTWVoqr+mk7hVrfVABP2W8bp3so/Runmed5XxfLqfpmz8fWLJEKvxDhgCXXMJgI4QkGCpMhBQDbnzJS0uB886TL6ds2mR/7AY/fu9+gluMHGm/AWqxRnzyosDa5ZWdi59W9uvW5ZfFqFHAli355bV2bb4g3NIif8tmpTDsxIXQmM7x453XvWKtD34JwkXOqZtoNtvX8lhXB9x8c/53//M/7u7vJH1NTbnjXbtkv0qXTUISC1svIcVA2H78Y8bkz9COGRNPOvwEt5g4UQq+VgJwsYam9qLAzpghlZZNm2RdmDEj95sTy4yZMmJMR1MTsGJF7lqaRUqPdv2uLmn11NKjRdrzU6bFWh/8EkQgBKfWvebmnCUJAOrrZTktXJizVgLBR100Sw8tkIQkGipMhBQDYUdram3tK5DGkQ4/wS0KuWMx4pNzFizIWXlWrZLHWt45scw4UUb052zd2ldZ0qirs3YZ9VOmrA/eCMKV0al1T38vQJZZWRlw9dUyhL3G1Ve7T0Oh9C1f3vc7QkhiocJESNTEEbUp7PUW5eXO1iyFnQ43blJ+3LGIPXbl7EQZcqKM6M9pasop4no0i8KiRfnfu3EZ1bfXsWNlXVm/npHxvOK0je7b13fbgkGD5G9OrXtW95o7F+jXLzzr4KxZQE+PXMMEcP0SISmAPT0hURPH3hyqrLcIOx1u3KRUcalKY3hqu3IOwzKjld2iRcDOnbnv33xTWpMqKvK/t3IZNUPfXvVWg2LcVycInLa70aNzG2O3t8tjbRsDp3XI6l5hWwfLyuQGzGabMBNCEklGCOOUXDpxs5svKQKs1jREwZQp+YJXQwOwbFm491RFKDdLBxBs2rR7rFkjI6mVlkrr0YwZ0jUs7jwworeOZDLys8pCuJO6FFd9s7I0ZTLAiBHAnj3u27uxveqJou0WK/365QdsKCsDurvjSw8hJHW40Q0UkBYIiYEgw2C7JQ5rjyrrLczSoRdyg5i111sENFaskGtpnEZPi5Kkhad2YiGNq75ZrWsSQobIF0JOkkyd6lxp0rdXPYyMFxxmCnZ1dc7CBMhjQgiJCSpMpDgJMgy2W1RxBQsDL5aFoBUG40Jv7bqbNhW+j136w7KaOFGg47YQ6u+/dau6Cp7VuqZMRipPmgC+ciVw+OHAtdcWzkt9ezVbw0T8Y6aEt7X1XcNECCExQYWJFCdOw2CHgSrWnjBobgbeegv49a+BykrpFjdpkv1/gra4mVkEMhlZxpqFyeo+dtaTsNaeOVGgw1z35kQZM7Pa6f+fzarh3qjHmK8LF+b/vmuX+QbFRtLcXlXBbNJkzpzcmiU3xD25QAhJJexFSHHiNAw2cce6dcChhwKf+IQ8njCh8H+Ctrhp/3eyhsks/VbWEyeWMC/CmhOBPEy3PSfKmNFqN3SoVDgAOfHQ3KyeUmHM11Wr8idJAPUsZMVKkJMmficXwlC4qMQRknjYYklx4jQMNnFHXR3ws58Bn/2stDJlMsAxx9j/J+gZfLvrFbqPneDmRKgLyxIU5ro3M2XMKOCNHZt/f73CpF1DVbRnyWSAmhrg3Xdl0BeA65BUIchJEyf12U5hMWvDM2b4CxIUR2RUQkigUGEihATHrFnSqrN4MfCFLwDTpgGzZydnNtVOcHMi1AVpCTLu/zNnTjhrZ8yUMaOAN2dO/qa+vb1yjVDcYeqdoH+WTEY+S0lJOtcQJpUgJ02c1GfA+n5mbVhvndQHCXKqiCUtsAshpA8JkWIIIYmgrExGI9u+XQoG8+dLl7ikzKbaCW5OhDovliCrEPdGIW/evHBCWJspglOn5gt469fn3zubTY7SYRRWjc9iRpzbDhB/OKnPdgqLWRu22vjYqSKmyj54UWG36TAhCYUKEyEkWC69FDj6aOCmm4Anniiu2VQvrkVWIe6jmpU2UwQLCXhJCISgzf5v3Zr7zqmwGue2A8QfXuqzHrM2bFz/pgUJctpG0xwZ1Qy7TYcJSShUmAghwdLdDXzuc8DjjwOnn57+2VQ9XhQJqxD3cc5K+xHwVJldNkb2q60Fpk939iyFth3gIn41cFoObuqzWRu2ChLktI0mYYIhSHbssD8mJIGwhyeEBEsmAzz/vBQkJk9O/2yqX6xC3Mc5K+1HwItjdtlMcDZG9jvySOfPVGjbAS7iDxavCqjTcvCrsFgFCSo2y5FTuOkwSSFUmAghwVJWBnzmM/JFCmM1e53UWek4ZpfNBGc/FrpC2w5wEX+weFVA/ZaDX0uh0zZabBZJbjpMUkiKWywhhARMGMEAysqAiRPle11d8gWpOGaXzQRnTcnxMvtfaNuBtCzid1ufzQT/ffuAkSOB3buBIUOkNXHIEHfpMJZfS4sz5cJvOTQ3A3Pnys/Ll8u1SsuWBd8Gi80iOWgQ1yyR1JHwkZkQQiIkjGAAqglTXmbD9f/52teApUujnV02E5zDtNClxRVryhRg7Vr5eeVKebxmjfX5ZnX1ttuAvXvl5927gU9+Etizx1069OUHANu2yVeh9uC3HIwWqbA2YQ7KIllslipCFIItjRBCnFIoGIAXVHPvslPgrAQ2sxDoUSp9USswSXWXNPLMM/bHRszqqqYsaRiPnaAvv61bpbKkv4cVfsuhrk5alvSE0f6CskiqNrlCSBFREncCCCEkMRgX/xuPvVBXJ4UoQL5ns3Kmv6lJfo4aOwVOE9iWL5fvzc2F/xMFmuC8bJl8T8qsezYryzmu8u7ttT82YqyrhQR/p8+nL7/p093dww+zZgH19blj/f26uoBJk4CDD5bvXV3+7jNvHtDQIN+9KvRxtzNCipiEjCqEEKIAhYIBeEE/u57N5lz+4ppBtpsNNwps2oaeY8eGv6Ynje5IcVsMRowA3nwz/9gOM0uetgbIjI8+ki5/f/6z8+eL0lpYViaVNGO9AoJ1vy0rk9fV7tPc7K3+pmXtHCFJRBQJHR0dAoDo6OiIOymEkCTT2SlEfb0QVVXyvbOz8H+6u4VobBSioUG+d3ebn9fQIIQUh+SroSHYtDvBLq2NjUJkMvlpzGSEmDvX2fP5QX/vTEaI9vbg7xE1UZW3VZ3du1eImhohysrk+9697v6vXeO884To31+Wy/btud96eoQ47DDr53PaLuKgqiq/bKqq/F3PWH8bG83Ps8sTlfOLkATiRjdI+PQcIYTY4NYq4eR8LzPPTi0JKswg260L0WbfFy0Cdu6Un4UA1q+XM/VhYrRuvfqqtIg8/jjwl78k0+IUVXlb1Vmn0czs6vygQcDDD5v/r70dePdd+dns+eK2sNlhtxeXF2unnTud/nrZrIzWZ5YnaVk7R0gCSdjoQgghLnArkDU3A488AixYAPz+98CPfgTMnp1/jpfAD07XHqgafc0oIP7nf8o1KVEqdkblYtUqKbh/9rPA+efLc5ImTEZV3oXq7O7d9qHBvQY7GTFCtj+r51N5TY6d+60XRc9OOdZfT49qeUJIEUOFiRCSDLzsgeRWIFu3DhgwQC5SnzIF+Pvf+57zwAPAO+/knHUOPbRw2p1aElSdQdYLdM89J/Ng/XqZ1qgUO6NysX59bv3N3r3Agw+Gn4agiaq87awlAFBTA3R0yM+7d8vj3but///FLzq7b2mp/fOpYFG1wm4vLi+Knp1yrL+eHtXyhJAihgoTISQZeHGFcyuQ1dVJd7NZs4DvflfuKWOkocF92lW1HDll3TppLfiv/wIuvxyoqJDfh+2Gp8eoXDQ1AZs3S8UWAC68MLq0JI1CwUo0Zcnq2Pj/u++W3z/7LPCFL9hPYNi5r6nYLpy423lR9OyUY+M+VPX1uY2sVcgTQggyQphNa6SPPXv2oLKyEh0dHajQBntCSHI4+ODcuhkAqKoC/vUv+//4WcM0eTJw/fVyljxO4o4O19sLvPIK8KlP5fLi/feBYcOiS4MZ2Szwy18C3/qWTJcmvBL39OuXH/K7rAzo7i78v4svlpsUA1LIN5vAaGrKWSczGX97dGltYc0aWS9LS4Hx44NtE07SG3SbjLuNE1KkuNEN2CIJIcmgkFuRGW5dnlR0iVNhYfwJJ8j3P/1JCsXa/ktxUlYGfPvbueMglKViFVy/9z25Xk9/XIgPPwQefTR3bLWuKch1SmZrfVaskO9u2oRdOTtJb9D9hIr9DiEkjyIYCQghqSCMPZCSQNwL47NZYOFCoKUFeO016ZIYtRKhCbjPPCMtf9ddF04a3CinKihXQaWhqUm607lxjdu1SwbcWL1aWnusJjCCXKdkttbHS5uwK2eV11URQmKDChMhJBnYLcJOM3ELcD/9KTBzZrwC5K9/DRx0EHDPPXLdTHNzODPybpRTFSx/QaXBzMJRSBk74gjZHt99V25O+6UvmV87yHVKxrU+gLc6aVfOca6rUkEJJ4SYwpZICCFRsG8fMHo0sGMHUF0NtLXJPWwKEffC+Guvle5XcS7Mv+wyuW7liCOA004DfvWrcO7jRjmN2/IXdhqcKmOf+EQurLsZZWWyzmiKQHOzd0VAq3tma5jMsIqsaVfOcbrHqaCEE0JMocJECCFRMHq03MgTkO+f/rRUBArNJse9vsHL/YOeKd+/H3jxReDWW4Hly8NT2twop3Fb/sJOQ1hrj4K2hNlhFVnTTTlHafVRQQknhJhChYkQQqJgx47847feSu9sctAz5aWlcq+l/fulwBqWwuRGINfS8NxzwM03A8ceG06anKQhDOtfWGuPrBQBL/usFcJqw1035Ryl1UcFJZwQYgoVJkIIsSLI2eXq6pyFCZBrcrq65Oe0zSYHPVMet5XNDBXSFGYa/ChjxnYzblxhRcDLPmuF8BJZ00iUVp+43W8JIZaUxJ0AQghRFm12efly+e4nnHZbG1BTI4Xcmhrgv/87Fwo7qNnkbFam88gj5Wvu3Pz9dbzQ1QVMmiT3wZo0Kafk2VFXF/yzqc7TT8toc37zWwX8ThQY240Q8r2hQb6bKQJW1iA/tLbK/aGqquS7l8iaUdZlTQFetky+M+ADIcrA1kgIIVYUml12I1gOGgRs357/34MOCnY2ubkZaGzMHTc1SXc2P1YILzP/+pnyceOAkhLgJz8BvvY14NBDvadFVR54QD6bRtyWJ78UckMrVO+N7WbDBqkE2BGENchIEJE1afUhhIAKEyGEWFNoTYGf9Q1u3amcKGdm7kJ+XYi8zPzrn239erm+p6pKHn/0kVQU08L99+crS2lwrSw0UVCo3pu1m0L1V9V91lRwvSSExA4VJkIIsaLQ7HKU6xucKGd1ddINyvidH/zO/I8bJ9+3bQN+9jNpZfv97/2lSSW2bJFKQZoW6heaKChU783aTaH6W6z7rBFCEgEVJkIIsaLQ7HKUUa2MQuqiRfKzfqZ+1iy5P83ixfJ42jT/LkR+Z/63bQO++13g8cdza1msSOLGnWl02Sr0TIXqvVm7YchsQkiCUXwkIoQQhTGu1enpAaZMCUfY1wupALBzZ0750ITTsjL5nZ1S4ha/M/+f/CRw8slAZ6d8hh/8wPrcJG7cmSaXLaPC2tpqXoe9KIkMmU0ISTBUmAghxCt6YbmpKVxhXxNKFy2SyhKQjJl6NwoFrRDx4lRh9aIkptESRwgpGqgwEUKKl127gOuvB0aM8G8RClvY1wupmlCbtpl6WiHiJcw6nCZLHCGk6KDCRAgpTnbulJHbbrsNOO88+Z0fgS4qYT/NM/VpfrYkQIWVEEJMyQihTSelmz179qCyshIdHR2oqKiIOzmEkLg5/3zg2muB004DuruBhQuB733P+/WSGLCAED2sw4SQIsKNbkCFiRBSnDQ1AT/6EXDvvcCFF8adGkIIIYREiBvdgFNHhJDiRHP3uvde4Igj5Ix6JhNvmgghhBCiHFSYCCHFCRehE0IIIcQBJXEngBBCCCGEEEJUhQoTIYQQQgghhFhAhYkQQgghhBBCLKDCRAghhBBCCCEWUGEihBBCCCGEEAuoMBFCCCGEEEKIBVSYCCGEEEIIIcQCKkyEEEIIIYQQYgEVJkIIIYQQQgixgAoTIYQQQgghhFhAhYkQQgghhBBCLKDCRAghhBBCCCEWUGEihBBCCCGEEAuoMBFCCCGEEEKIBVSYCCGEEEIIIcQCKkyEEEIIIYQQYgEVJkIIIYQQQgixgAoTIYQQQgghhFhAhYkQQgghhBBCLKDCRAghhBBCCCEWUGEihBBCCCGEEAuoMBFCCCGEEEKIBVSYCCGEEEIIIcQCKkyEEEIIIYQQYgEVJkIIIYQQQgixgAoTIYQQQgghhFhAhYkQQgghhBBCLKDCRAghhBBCCCEWlMWdgKgQQgAA9uzZE3NKCCGEEEIIIXGi6QSajmBH0ShMe/fuBQAMHz485pQQQgghhBBCVGDv3r2orKy0PScjnKhVKaC3txdvv/02Bg8ejEwmk/fbnj17MHz4cLz11luoqKiIKYXph/kcHczraGA+RwfzOhqYz9HBvI4G5nN0JC2vhRDYu3cvDj/8cJSU2K9SKhoLU0lJCaqrq23PqaioSEQBJx3mc3Qwr6OB+RwdzOtoYD5HB/M6GpjP0ZGkvC5kWdJg0AdCCCGEEEIIsYAKEyGEEEIIIYRYQIUJQP/+/TF37lz0798/7qSkGuZzdDCvo4H5HB3M62hgPkcH8zoamM/Rkea8LpqgD4QQQgghhBDiFlqYCCGEEEIIIcQCKkyEEEIIIYQQYgEVJkIIIYQQQgixgAoTIYQQQgghhFiQeIXphz/8IcaNG4eBAwdiyJAhfX7ftGkTLrroIgwfPhwDBgzAcccdh0WLFuWd88gjj6ChoQEf//jHUVFRgbFjx+Kpp56yvW97ezsymUyf17PPPnvgnLvuugvjx4/H0KFDMXToUJxxxhl47rnnAnnuOFA5rwHgoYcewrHHHovy8nKMHj0ara2tvp85DuLKZz1vvPEGBg8ebHr/hQsX4phjjsGAAQMwfPhwfPe730VXV5fbx1QC1fN69+7duPrqq3HYYYehf//+OProoxNZr1XPZ40HHngAmUwG5557ruPrqobKeZ2mMVHlfAbSMx4C8eX15s2bUV9fj0MPPRTl5eWora3FD37wA3R3d+edl5YxUfV8jns8TLzC9NFHH+H888/HVVddZfr7iy++iGHDhmHJkiV49dVXceONN+KGG27Az372swPnrFmzBg0NDWhtbcWLL76I+vp6fOlLX8LGjRsL3v/Pf/4z3nnnnQOvk08++cBvq1atwkUXXYSVK1diw4YNGD58OKZMmYJ//OMf/h88BlTO6/Xr1+Oiiy7C5Zdfjo0bN+Lcc8/Fueeei1deecX/g0dM3Pnc3d2Niy66COPHj+/z29KlSzFz5kzMnTsXr7/+Ou6++248+OCDmDVrlvcHjhGV8/qjjz5CQ0MD2tvb8fDDD2Pz5s246667cMQRR3h/4JhQOZ812tvbcf3119uekwRUzus0jYkq53OaxkMgvrzu168fLr30UixbtgybN2/GwoULcdddd2Hu3LkHzknTmKhyPisxHoqUcO+994rKykpH5377298W9fX1tuccf/zxorGx0fL37du3CwBi48aNjtOYzWbF4MGDRUtLi+P/qIiKeX3BBReIL3zhC3nfnXrqqeJb3/qWo3SqSNT5rDFjxgwxbdo00/tfffXVYtKkSXnfXXfddeK0005zlE5VUTGv77zzTlFbWys++ugjR+lKAirmsxCybx43bpz41a9+JaZPny7OOeccR2lUGVXzWk8axkQV8zmN46EQ8eW1nu9+97uirq7uwHEax0QV81mF8TDxFiYvdHR0oKqqyvL33t5e7N271/YcjbPPPhvDhg1DXV0dHnvsMdtzP/zwQ3R3dzu6blqIKq83bNiAM844I++7M888Exs2bPCW8IQRVD4//fTTeOihh3DHHXeY/j5u3Di8+OKLB9xotm3bhtbWVkydOtV74hNGVHn92GOPYezYsbj66qtx6KGH4tOf/jSam5vR09PjK/1JIap8BoCmpiYMGzYMl19+uef0Jpko81pPsY2JUeVzsY+HQLCyh8Ybb7yBP/3pTzj99NMPfFfsY2JU+azEeBibqhYwTjXiZ555RpSVlYmnnnrK8pxbbrlFDB06VLz33nuW53zwwQfixz/+sXj22WfFc889J77//e+LTCYjHn30Ucv/XHXVVaK2tlZ0dnYWTKfKqJjX/fr1E0uXLs373x133CGGDRtW+IEUJep8/uc//ymGDx8uVq9ebXv/RYsWiX79+omysjIBQFx55ZUF06g6Kub1McccI/r37y8uu+wy8cILL4gHHnhAVFVViXnz5jl6JhVRMZ/Xrl0rjjjiCPHBBx8IIUTRWZii7j/0pGFMVDGf0zgeChF9XmuMHTtW9O/fXwAQV1xxhejp6cn7PW1joor5rMJ4qKTC9P3vf18AsH29/vrref9xUsBtbW3ikEMOEfPnz7c85ze/+Y0YOHCgWL58uet0X3LJJXkmRD0/+tGPxNChQ8WmTZtcXzdM0pLXqg8QScjnL3/5y+L73/++7f1XrlwpDj30UHHXXXeJl19+WTzyyCNi+PDhoqmpyfbaUZKWvB41apQYPny4yGazB7778Y9/LD7xiU/YXjsq0pDPe/bsETU1NaK1tfXAdyoqTGnIayMqjolpyWfVx0MhkpHXGn//+9/Fq6++KpYuXSqOOOIIccsttxz4TfUxMS35rMJ4qKTC9P7774vXX3/d9rV///68/xQq4FdffVUMGzZMzJo1y/Kc+++/XwwYMEA8/vjjntL9s5/9zLTwbr31VlFZWSmef/55T9cNk7Tk9fDhw8VPfvKTvHPmzJkjTjjhBE/XD5ok5HNlZaUoLS098CopKREARGlpqbj77ruFEELU1dWJ66+/Pu9/ixcvFgMGDOgz6xYXacnrCRMmiMmTJ+f9r7W1VQDok/44SEM+b9y48cCx9spkMiKTyYjS0lLxxhtvOM6PMElDXutRdUxMSz6rPh4KkYy8NkMb7zTBXfUxMS35rMJ4qKTC5AW7An7llVfEsGHDxPe+9z3L/y9dulSUl5eLP/zhD57T8I1vfEP8n//zf/K+u+WWW0RFRYXYsGGD5+uqhop5fcEFF4gvfvGLeeeMHTs20Ytco87n1157TbS1tR143XTTTWLw4MGira1N7Ny5UwghxEknnSRmzJjR5z76ji2JqJjXN9xwgxgxYkTeoLtw4UJx2GGHOX8wxVAtnzs7O/N+b2trE+ecc46YNGmSaGtrU0Ix9Ypqea2RtjFRxXxO43gohBqyR0tLiygrKzsQfCCNY6KK+azCeJh4henNN98UGzduFI2NjWLQoEFi48aNYuPGjWLv3r1CCGk2/PjHPy6mTZsm3nnnnQOv999//8A1fvOb34iysjJxxx135J2ze/fuA+f83//7f/Miodx3331i6dKlBzT0H/7wh6KkpETcc889B865+eabxUEHHSQefvjhvOtqaUsaKue15kt72223iddff13MnTtX9OvXT7S1tUWQM8ESVz4bMes0586dKwYPHizuv/9+sW3bNrFs2TJx5JFHigsuuCDYTIgIlfP673//uxg8eLD4zne+IzZv3iwef/xxMWzYMHHTTTcFmwkRoHI+G1HRJc8NKud1msZElfM5TeOhEPHl9ZIlS8SDDz4oXnvtNbF161bx4IMPisMPP1xcfPHFB85J05iocj6rMB4mXmGaPn26qU/mypUrhRCyMpv9PmLEiAPXOP30003PmT59+oFz5s6dm/ef++67Txx33HFi4MCBoqKiQnz2s58VDz30UF7aRowYYXrduXPnhpchIaJyXgshxG9/+1tx9NFHi4MOOkh86lOfEk888URIOREuceWzEbOBuLu7W8ybN08ceeSRory8XAwfPlx8+9vfFrt27Qrs+aNE5bwWQoj169eLU089VfTv31/U1taKH/7wh4mctVQ9n41pTbLCpHJep2lMVDmfhUjPeChEfHn9wAMPiJNOOkkMGjRIfOxjHxPHH3+8aG5uzgtSkqYxUeV8FiL+8TAjhBAghBBCCCGEENKHotyHiRBCCCGEEEKcQIWJEEIIIYQQQiygwkQIIYQQQgghFlBhIoQQQgghhBALqDARQgghhBBCiAVUmAghhBBCCCHEAipMhBBCCCGEEGIBFSZCCCGEEEIIsYAKEyGEEEIIIYRYQIWJEEIIIYQQQiygwkQIIYQQQgghFlBhIoQQQgghhBAL/j+p4Sdh0oKOtgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Load San Francisco map data\n", + "sf = gpd.read_file(\"https://data.sfgov.org/resource/3psu-pn9h.geojson\")\n", + "\n", + "# Plot the San Francisco map and the points\n", + "fig, ax = plt.subplots(figsize=(10, 10))\n", + "sf.plot(ax=ax, color=\"white\", edgecolor=\"black\")\n", + "gdf.plot(ax=ax, color=\"red\", markersize=5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "a081a9d1", + "metadata": {}, + "source": [ + "Load GeoPandas dataframe as a `Document` for downstream processing (embedding, chat, etc). \n", + "\n", + "The `geometry` will be the default `page_content` columns, and all other columns are placed in `metadata`.\n", + "\n", + "But, we can specify the `page_content_column`." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "381a5f7b", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.document_loaders import GeoDataFrameLoader\n", + "\n", + "loader = GeoDataFrameLoader(data_frame=gdf, page_content_column=\"geometry\")\n", + "docs = loader.load()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "74baf6ee", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Document(page_content='POINT (-122.420084075249 37.7083109744362)', metadata={'pdid': '4133422003074', 'incidntnum': '041334220', 'incident_code': '03074', 'category': 'ROBBERY', 'descript': 'ROBBERY, BODILY FORCE', 'dayofweek': 'Monday', 'date': '2004-11-22T00:00:00.000', 'time': '17:50', 'pddistrict': 'INGLESIDE', 'resolution': 'NONE', 'address': 'GENEVA AV / SANTOS ST', 'x': '-122.420084075249', 'y': '37.7083109744362', 'location': {'type': 'Point', 'coordinates': [-122.420084075249, 37.7083109744362]}, ':@computed_region_26cr_cadq': '9', ':@computed_region_rxqg_mtj9': '8', ':@computed_region_bh8s_q3mv': '309', ':@computed_region_6qbp_sg9q': nan, ':@computed_region_qgnn_b9vv': nan, ':@computed_region_ajp5_b2md': nan, ':@computed_region_yftq_j783': nan, ':@computed_region_p5aj_wyqh': nan, ':@computed_region_fyvs_ahh9': nan, ':@computed_region_6pnf_4xz7': nan, ':@computed_region_jwn9_ihcz': nan, ':@computed_region_9dfj_4gjx': nan, ':@computed_region_4isq_27mq': nan, ':@computed_region_pigm_ib2e': nan, ':@computed_region_9jxd_iqea': nan, ':@computed_region_6ezc_tdp2': nan, ':@computed_region_h4ep_8xdi': nan, ':@computed_region_n4xg_c4py': nan, ':@computed_region_fcz8_est8': nan, ':@computed_region_nqbw_i6c3': nan, ':@computed_region_2dwj_jsy4': nan, 'Latitude': 37.7083109744362, 'Longitude': -122.420084075249})" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "docs[0]" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/langchain/document_loaders/__init__.py b/langchain/document_loaders/__init__.py index 66e5c198f0a7d..da91ddf09ba1d 100644 --- a/langchain/document_loaders/__init__.py +++ b/langchain/document_loaders/__init__.py @@ -51,6 +51,7 @@ from langchain.document_loaders.figma import FigmaFileLoader from langchain.document_loaders.gcs_directory import GCSDirectoryLoader from langchain.document_loaders.gcs_file import GCSFileLoader +from langchain.document_loaders.geodataframe import GeoDataFrameLoader from langchain.document_loaders.git import GitLoader from langchain.document_loaders.gitbook import GitbookLoader from langchain.document_loaders.github import GitHubIssuesLoader @@ -200,6 +201,7 @@ "FileSystemBlobLoader", "GCSDirectoryLoader", "GCSFileLoader", + "GeoDataFrameLoader", "GitHubIssuesLoader", "GitLoader", "GitbookLoader", diff --git a/langchain/document_loaders/geodataframe.py b/langchain/document_loaders/geodataframe.py new file mode 100644 index 0000000000000..95efeae7240ef --- /dev/null +++ b/langchain/document_loaders/geodataframe.py @@ -0,0 +1,49 @@ +"""Load from Dataframe object""" +from typing import Any, Iterator, List + +from langchain.docstore.document import Document +from langchain.document_loaders.base import BaseLoader + + +class GeoDataFrameLoader(BaseLoader): + """Load geopandas Dataframe.""" + + def __init__(self, data_frame: Any, page_content_column: str = "geometry"): + """Initialize with geopandas Dataframe. + + Args: + data_frame: geopandas DataFrame object. + page_content_column: Name of the column containing the page content. + Defaults to "geometry". + """ + + try: + import geopandas as gpd + except ImportError: + raise ValueError( + "geopandas package not found, please install it with " + "`pip install geopandas`" + ) + + if not isinstance(data_frame, gpd.GeoDataFrame): + raise ValueError( + f"Expected data_frame to be a gpd.GeoDataFrame, got {type(data_frame)}" + ) + + self.data_frame = data_frame + self.page_content_column = page_content_column + + def lazy_load(self) -> Iterator[Document]: + """Lazy load records from dataframe.""" + + for _, row in self.data_frame.iterrows(): + text = row[self.page_content_column] + metadata = row.to_dict() + metadata.pop(self.page_content_column) + # Enforce str since shapely Point objects + # geometry type used in GeoPandas) are not strings + yield Document(page_content=str(text), metadata=metadata) + + def load(self) -> List[Document]: + """Load full dataframe.""" + return list(self.lazy_load()) diff --git a/poetry.lock b/poetry.lock index ae3462d4f99fe..48f1005d3dedf 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1672,6 +1672,23 @@ docs = ["Pallets-Sphinx-Themes", "m2r2", "sphinx"] tests = ["pytest"] tests-cov = ["coverage", "coveralls", "pytest", "pytest-cov"] +[[package]] +name = "click-plugins" +version = "1.1.1" +description = "An extension module for click to enable registering CLI commands via setuptools entry-points." +optional = true +python-versions = "*" +files = [ + {file = "click-plugins-1.1.1.tar.gz", hash = "sha256:46ab999744a9d831159c3411bb0c79346d94a444df9a3a3742e9ed63645f264b"}, + {file = "click_plugins-1.1.1-py2.py3-none-any.whl", hash = "sha256:5d262006d3222f5057fd81e1623d4443e41dcda5dc815c06b442aa3c02889fc8"}, +] + +[package.dependencies] +click = ">=4.0" + +[package.extras] +dev = ["coveralls", "pytest (>=3.6)", "pytest-cov", "wheel"] + [[package]] name = "clickhouse-connect" version = "0.5.25" @@ -1761,6 +1778,23 @@ pandas = ["pandas"] sqlalchemy = ["sqlalchemy (>1.3.21,<1.4)"] superset = ["apache-superset (>=1.4.1)"] +[[package]] +name = "cligj" +version = "0.7.2" +description = "Click params for commmand line interfaces to GeoJSON" +optional = true +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, <4" +files = [ + {file = "cligj-0.7.2-py3-none-any.whl", hash = "sha256:c1ca117dbce1fe20a5809dc96f01e1c2840f6dcc939b3ddbb1111bf330ba82df"}, + {file = "cligj-0.7.2.tar.gz", hash = "sha256:a4bc13d623356b373c2c27c53dbd9c68cae5d526270bfa71f6c6fa69669c6b27"}, +] + +[package.dependencies] +click = ">=4.0" + +[package.extras] +test = ["pytest-cov"] + [[package]] name = "cloudpickle" version = "2.2.1" @@ -2682,6 +2716,50 @@ files = [ {file = "filetype-1.2.0.tar.gz", hash = "sha256:66b56cd6474bf41d8c54660347d37afcc3f7d1970648de365c102ef77548aadb"}, ] +[[package]] +name = "fiona" +version = "1.9.4.post1" +description = "Fiona reads and writes spatial data files" +optional = true +python-versions = ">=3.7" +files = [ + {file = "Fiona-1.9.4.post1-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:d6483a20037db2209c8e9a0c6f1e552f807d03c8f42ed0c865ab500945a37c4d"}, + {file = "Fiona-1.9.4.post1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:dbe158947099a83ad16f9acd3a21f50ff01114c64e2de67805e382e6b6e0083a"}, + {file = "Fiona-1.9.4.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c2c7b09eecee3bb074ef8aa518cd6ab30eb663c6fdd0eff3c88d454a9746eaa"}, + {file = "Fiona-1.9.4.post1-cp310-cp310-win_amd64.whl", hash = "sha256:1da8b954f6f222c3c782bc285586ea8dd9d7e55e1bc7861da9cd772bca671660"}, + {file = "Fiona-1.9.4.post1-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:c671d8832287cda397621d79c5a635d52e4631f33a8f0e6fdc732a79a93cb96c"}, + {file = "Fiona-1.9.4.post1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b633a2e550e083805c638d2ab8059c283ca112aaea8241e170c012d2ee0aa905"}, + {file = "Fiona-1.9.4.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c1faa625d5202b8403471bbc9f9c96b1bf9099cfcb0ee02a80a3641d3d02383e"}, + {file = "Fiona-1.9.4.post1-cp311-cp311-win_amd64.whl", hash = "sha256:39baf11ff0e4318397e2b2197de427b4eebdc49d4a9a7c1366f8a7ed682978a4"}, + {file = "Fiona-1.9.4.post1-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:d93c993265f6378b23f47708c83bddb3377ca6814a1f0b5a0ae0bee9c8d72cf8"}, + {file = "Fiona-1.9.4.post1-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:b0387cae39e27f338fd948b3b50b6e6ce198cc4cec257fc91660849697c69dc3"}, + {file = "Fiona-1.9.4.post1-cp37-cp37m-win_amd64.whl", hash = "sha256:450561d308d3ce7c7e30294822b1de3f4f942033b703ddd4a91a7f7f5f506ca0"}, + {file = "Fiona-1.9.4.post1-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:71b023ef5248ebfa5524e7a875033f7db3bbfaf634b1b5c1ae36958d1eb82083"}, + {file = "Fiona-1.9.4.post1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:74511d3755695d75cea0f4ff6f5e0c6c5d5be8e0d46dafff124c6a219e99b1eb"}, + {file = "Fiona-1.9.4.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:285f3dd4f96aa0a3955ed469f0543375b20989731b2dddc85124453f11ac62bc"}, + {file = "Fiona-1.9.4.post1-cp38-cp38-win_amd64.whl", hash = "sha256:a670ea4262cb9140445bcfc97cbfd2f508a058be342f4a97e966b8ce7696601f"}, + {file = "Fiona-1.9.4.post1-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:ea7c44c15b3a653452b9b3173181490b7afc5f153b0473c145c43c0fbf90448b"}, + {file = "Fiona-1.9.4.post1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7bfb1f49e0e53f6cd7ad64ae809d72646266b37a7b9881205977408b443a8d79"}, + {file = "Fiona-1.9.4.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a585002a6385cc8ab0f66ddf3caf18711f531901906abd011a67a0cc89ab7b0"}, + {file = "Fiona-1.9.4.post1-cp39-cp39-win_amd64.whl", hash = "sha256:f5da66b723a876142937e683431bbaa5c3d81bb2ed3ec98941271bc99b7f8cd0"}, + {file = "Fiona-1.9.4.post1.tar.gz", hash = "sha256:5679d3f7e0d513035eb72e59527bb90486859af4405755dfc739138633106120"}, +] + +[package.dependencies] +attrs = ">=19.2.0" +certifi = "*" +click = ">=8.0,<9.0" +click-plugins = ">=1.0" +cligj = ">=0.5" +importlib-metadata = {version = "*", markers = "python_version < \"3.10\""} +six = "*" + +[package.extras] +all = ["Fiona[calc,s3,test]"] +calc = ["shapely"] +s3 = ["boto3 (>=1.3.1)"] +test = ["Fiona[s3]", "pytest (>=7)", "pytest-cov", "pytz"] + [[package]] name = "flatbuffers" version = "23.5.26" @@ -2920,6 +2998,24 @@ files = [ click = "*" six = "*" +[[package]] +name = "geopandas" +version = "0.13.2" +description = "Geographic pandas extensions" +optional = true +python-versions = ">=3.8" +files = [ + {file = "geopandas-0.13.2-py3-none-any.whl", hash = "sha256:101cfd0de54bcf9e287a55b5ea17ebe0db53a5e25a28bacf100143d0507cabd9"}, + {file = "geopandas-0.13.2.tar.gz", hash = "sha256:e5b56d9c20800c77bcc0c914db3f27447a37b23b2cd892be543f5001a694a968"}, +] + +[package.dependencies] +fiona = ">=1.8.19" +packaging = "*" +pandas = ">=1.1.0" +pyproj = ">=3.0.1" +shapely = ">=1.7.1" + [[package]] name = "ghapi" version = "0.1.22" @@ -8231,6 +8327,53 @@ files = [ {file = "PyPika-0.48.9.tar.gz", hash = "sha256:838836a61747e7c8380cd1b7ff638694b7a7335345d0f559b04b2cd832ad5378"}, ] +[[package]] +name = "pyproj" +version = "3.5.0" +description = "Python interface to PROJ (cartographic projections and coordinate transformations library)" +optional = true +python-versions = ">=3.8" +files = [ + {file = "pyproj-3.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6475ce653880938468a1a1b7321267243909e34b972ba9e53d5982c41d555918"}, + {file = "pyproj-3.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:61e4ad57d89b03a7b173793b31bca8ee110112cde1937ef0f42a70b9120c827d"}, + {file = "pyproj-3.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bdd2021bb6f7f346bfe1d2a358aa109da017d22c4704af2d994e7c7ee0a7a53"}, + {file = "pyproj-3.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5674923351e76222e2c10c58b5e1ac119d7a46b270d822c463035971b06f724b"}, + {file = "pyproj-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd5e2b6aa255023c4acd0b977590f1f7cc801ba21b4d806fcf6dfac3474ebb83"}, + {file = "pyproj-3.5.0-cp310-cp310-win32.whl", hash = "sha256:6f316a66031a14e9c5a88c91f8b77aa97f5454895674541ed6ab630b682be35d"}, + {file = "pyproj-3.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:f7c2f4d9681e810cf40239caaca00079930a6d9ee6591139b88d592d36051d82"}, + {file = "pyproj-3.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7572983134e310e0ca809c63f1722557a040fe9443df5f247bf11ba887eb1229"}, + {file = "pyproj-3.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:eccb417b91d0be27805dfc97550bfb8b7db94e9fe1db5ebedb98f5b88d601323"}, + {file = "pyproj-3.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:621d78a9d8bf4d06e08bef2471021fbcb1a65aa629ad4a20c22e521ce729cc20"}, + {file = "pyproj-3.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d9a024370e917c899bff9171f03ea6079deecdc7482a146a2c565f3b9df134ea"}, + {file = "pyproj-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b7c2113c4d11184a238077ec85e31eda1dcc58ffeb9a4429830e0a7036e787d"}, + {file = "pyproj-3.5.0-cp311-cp311-win32.whl", hash = "sha256:a730f5b4c98c8a0f312437873e6e34dbd4cc6dc23d5afd91a6691c62724b1f68"}, + {file = "pyproj-3.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:e97573de0ab3bbbcb4c7748bc41f4ceb6da10b45d35b1a294b5820701e7c25f0"}, + {file = "pyproj-3.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2b708fd43453b985642b737d4a6e7f1d6a0ab1677ffa4e14cc258537b49224b0"}, + {file = "pyproj-3.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b60d93a200639e8367c6542a964fd0aa2dbd152f256c1831dc18cd5aa470fb8a"}, + {file = "pyproj-3.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38862fe07316ae12b79d82d298e390973a4f00b684f3c2d037238e20e00610ba"}, + {file = "pyproj-3.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:71b65f2a38cd9e16883dbb0f8ae82bdf8f6b79b1b02975c78483ab8428dbbf2f"}, + {file = "pyproj-3.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b752b7d9c4b08181c7e8c0d9c7f277cbefff42227f34d3310696a87c863d9dd3"}, + {file = "pyproj-3.5.0-cp38-cp38-win32.whl", hash = "sha256:b937215bfbaf404ec8f03ca741fc3f9f2c4c2c5590a02ccddddd820ae3c71331"}, + {file = "pyproj-3.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:97ed199033c2c770e7eea2ef80ff5e6413426ec2d7ec985b869792f04ab95d05"}, + {file = "pyproj-3.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:052c49fce8b5d55943a35c36ccecb87350c68b48ba95bc02a789770c374ef819"}, + {file = "pyproj-3.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1507138ea28bf2134d31797675380791cc1a7156a3aeda484e65a78a4aba9b62"}, + {file = "pyproj-3.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c02742ef3d846401861a878a61ef7ad911ea7539d6cc4619ddb52dbdf7b45aee"}, + {file = "pyproj-3.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:385b0341861d3ebc8cad98337a738821dcb548d465576527399f4955ca24b6ed"}, + {file = "pyproj-3.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8fe6bb1b68a35d07378d38be77b5b2f8dd2bea5910c957bfcc7bee55988d3910"}, + {file = "pyproj-3.5.0-cp39-cp39-win32.whl", hash = "sha256:5c4b85ac10d733c42d73a2e6261c8d6745bf52433a31848dd1b6561c9a382da3"}, + {file = "pyproj-3.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:1798ff7d65d9057ebb2d017ffe8403268b8452f24d0428b2140018c25c7fa1bc"}, + {file = "pyproj-3.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d711517a8487ef3245b08dc82f781a906df9abb3b6cb0ce0486f0eeb823ca570"}, + {file = "pyproj-3.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:788a5dadb532644a64efe0f5f01bf508c821eb7e984f13a677d56002f1e8a67a"}, + {file = "pyproj-3.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73f7960a97225812f9b1d7aeda5fb83812f38de9441e3476fcc8abb3e2b2f4de"}, + {file = "pyproj-3.5.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fde5ece4d2436b5a57c8f5f97b49b5de06a856d03959f836c957d3e609f2de7e"}, + {file = "pyproj-3.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e08db25b61cf024648d55973cc3d1c3f1d0818fabf594d5f5a8e2318103d2aa0"}, + {file = "pyproj-3.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a87b419a2a352413fbf759ecb66da9da50bd19861c8f26db6a25439125b27b9"}, + {file = "pyproj-3.5.0.tar.gz", hash = "sha256:9859d1591c1863414d875ae0759e72c2cffc01ab989dc64137fbac572cc81bf6"}, +] + +[package.dependencies] +certifi = "*" + [[package]] name = "pyproject-hooks" version = "1.0.0" @@ -9603,6 +9746,60 @@ files = [ {file = "sgmllib3k-1.0.0.tar.gz", hash = "sha256:7868fb1c8bfa764c1ac563d3cf369c381d1325d36124933a726f29fcdaa812e9"}, ] +[[package]] +name = "shapely" +version = "2.0.1" +description = "Manipulation and analysis of geometric objects" +optional = true +python-versions = ">=3.7" +files = [ + {file = "shapely-2.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:b06d031bc64149e340448fea25eee01360a58936c89985cf584134171e05863f"}, + {file = "shapely-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9a6ac34c16f4d5d3c174c76c9d7614ec8fe735f8f82b6cc97a46b54f386a86bf"}, + {file = "shapely-2.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:865bc3d7cc0ea63189d11a0b1120d1307ed7a64720a8bfa5be2fde5fc6d0d33f"}, + {file = "shapely-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45b4833235b90bc87ee26c6537438fa77559d994d2d3be5190dd2e54d31b2820"}, + {file = "shapely-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce88ec79df55430e37178a191ad8df45cae90b0f6972d46d867bf6ebbb58cc4d"}, + {file = "shapely-2.0.1-cp310-cp310-win32.whl", hash = "sha256:01224899ff692a62929ef1a3f5fe389043e262698a708ab7569f43a99a48ae82"}, + {file = "shapely-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:da71de5bf552d83dcc21b78cc0020e86f8d0feea43e202110973987ffa781c21"}, + {file = "shapely-2.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:502e0a607f1dcc6dee0125aeee886379be5242c854500ea5fd2e7ac076b9ce6d"}, + {file = "shapely-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7d3bbeefd8a6a1a1017265d2d36f8ff2d79d0162d8c141aa0d37a87063525656"}, + {file = "shapely-2.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f470a130d6ddb05b810fc1776d918659407f8d025b7f56d2742a596b6dffa6c7"}, + {file = "shapely-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4641325e065fd3e07d55677849c9ddfd0cf3ee98f96475126942e746d55b17c8"}, + {file = "shapely-2.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:90cfa4144ff189a3c3de62e2f3669283c98fb760cfa2e82ff70df40f11cadb39"}, + {file = "shapely-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70a18fc7d6418e5aea76ac55dce33f98e75bd413c6eb39cfed6a1ba36469d7d4"}, + {file = "shapely-2.0.1-cp311-cp311-win32.whl", hash = "sha256:09d6c7763b1bee0d0a2b84bb32a4c25c6359ad1ac582a62d8b211e89de986154"}, + {file = "shapely-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:d8f55f355be7821dade839df785a49dc9f16d1af363134d07eb11e9207e0b189"}, + {file = "shapely-2.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:83a8ec0ee0192b6e3feee9f6a499d1377e9c295af74d7f81ecba5a42a6b195b7"}, + {file = "shapely-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a529218e72a3dbdc83676198e610485fdfa31178f4be5b519a8ae12ea688db14"}, + {file = "shapely-2.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:91575d97fd67391b85686573d758896ed2fc7476321c9d2e2b0c398b628b961c"}, + {file = "shapely-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8b0d834b11be97d5ab2b4dceada20ae8e07bcccbc0f55d71df6729965f406ad"}, + {file = "shapely-2.0.1-cp37-cp37m-win32.whl", hash = "sha256:b4f0711cc83734c6fad94fc8d4ec30f3d52c1787b17d9dca261dc841d4731c64"}, + {file = "shapely-2.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:05c51a29336e604c084fb43ae5dbbfa2c0ef9bd6fedeae0a0d02c7b57a56ba46"}, + {file = "shapely-2.0.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b519cf3726ddb6c67f6a951d1bb1d29691111eaa67ea19ddca4d454fbe35949c"}, + {file = "shapely-2.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:193a398d81c97a62fc3634a1a33798a58fd1dcf4aead254d080b273efbb7e3ff"}, + {file = "shapely-2.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e55698e0ed95a70fe9ff9a23c763acfe0bf335b02df12142f74e4543095e9a9b"}, + {file = "shapely-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f32a748703e7bf6e92dfa3d2936b2fbfe76f8ce5f756e24f49ef72d17d26ad02"}, + {file = "shapely-2.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1a34a23d6266ca162499e4a22b79159dc0052f4973d16f16f990baa4d29e58b6"}, + {file = "shapely-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d173d24e85e51510e658fb108513d5bc11e3fd2820db6b1bd0522266ddd11f51"}, + {file = "shapely-2.0.1-cp38-cp38-win32.whl", hash = "sha256:3cb256ae0c01b17f7bc68ee2ffdd45aebf42af8992484ea55c29a6151abe4386"}, + {file = "shapely-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:c7eed1fb3008a8a4a56425334b7eb82651a51f9e9a9c2f72844a2fb394f38a6c"}, + {file = "shapely-2.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:ac1dfc397475d1de485e76de0c3c91cc9d79bd39012a84bb0f5e8a199fc17bef"}, + {file = "shapely-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:33403b8896e1d98aaa3a52110d828b18985d740cc9f34f198922018b1e0f8afe"}, + {file = "shapely-2.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2569a4b91caeef54dd5ae9091ae6f63526d8ca0b376b5bb9fd1a3195d047d7d4"}, + {file = "shapely-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a70a614791ff65f5e283feed747e1cc3d9e6c6ba91556e640636bbb0a1e32a71"}, + {file = "shapely-2.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c43755d2c46b75a7b74ac6226d2cc9fa2a76c3263c5ae70c195c6fb4e7b08e79"}, + {file = "shapely-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad81f292fffbd568ae71828e6c387da7eb5384a79db9b4fde14dd9fdeffca9a"}, + {file = "shapely-2.0.1-cp39-cp39-win32.whl", hash = "sha256:b50c401b64883e61556a90b89948297f1714dbac29243d17ed9284a47e6dd731"}, + {file = "shapely-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:bca57b683e3d94d0919e2f31e4d70fdfbb7059650ef1b431d9f4e045690edcd5"}, + {file = "shapely-2.0.1.tar.gz", hash = "sha256:66a6b1a3e72ece97fc85536a281476f9b7794de2e646ca8a4517e2e3c1446893"}, +] + +[package.dependencies] +numpy = ">=1.14" + +[package.extras] +docs = ["matplotlib", "numpydoc (==1.1.*)", "sphinx", "sphinx-book-theme", "sphinx-remove-toctrees"] +test = ["pytest", "pytest-cov"] + [[package]] name = "simple-di" version = "0.1.5" @@ -12339,7 +12536,7 @@ clarifai = ["clarifai"] cohere = ["cohere"] docarray = ["docarray"] embeddings = ["sentence-transformers"] -extended-testing = ["atlassian-python-api", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "esprima", "gql", "html2text", "jq", "lxml", "mwparserfromhell", "mwxml", "openai", "openai", "pandas", "pdfminer-six", "pgvector", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "requests-toolbelt", "scikit-learn", "streamlit", "sympy", "telethon", "tqdm", "zep-python"] +extended-testing = ["atlassian-python-api", "beautifulsoup4", "bibtexparser", "cassio", "chardet", "esprima", "geopandas", "gql", "html2text", "jq", "lxml", "mwparserfromhell", "mwxml", "openai", "openai", "pandas", "pdfminer-six", "pgvector", "psychicapi", "py-trello", "pymupdf", "pypdf", "pypdfium2", "pyspark", "rank-bm25", "rapidfuzz", "requests-toolbelt", "scikit-learn", "streamlit", "sympy", "telethon", "tqdm", "zep-python"] javascript = ["esprima"] llms = ["anthropic", "clarifai", "cohere", "huggingface_hub", "manifest-ml", "nlpcloud", "openai", "openllm", "openlm", "torch", "transformers"] openai = ["openai", "tiktoken"] @@ -12349,4 +12546,5 @@ text-helpers = ["chardet"] [metadata] lock-version = "2.0" python-versions = ">=3.8.1,<4.0" -content-hash = "aee2f0c85636738d08d512c53fd551ab43a2e94c1ebf14c6178c9534da75dcaa" + +content-hash = "0fb2ef2801d5b9feb62bf4ac8fe00b3a9e951e69734814c9f9ccad653c185cd2" diff --git a/pyproject.toml b/pyproject.toml index 582d65972ee81..b57aec1e916b5 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -122,6 +122,7 @@ sympy = {version = "^1.12", optional = true} rapidfuzz = {version = "^3.1.1", optional = true} langsmith = "^0.0.10" rank-bm25 = {version = "^0.2.2", optional = true} +geopandas = {version = "^0.13.1", optional = true} [tool.poetry.group.docs.dependencies] autodoc_pydantic = "^1.8.0" @@ -364,6 +365,7 @@ extended_testing = [ "rapidfuzz", "openai", "rank_bm25", + "geopandas", ] [[tool.poetry.source]] diff --git a/tests/integration_tests/document_loaders/test_geodataframe.py b/tests/integration_tests/document_loaders/test_geodataframe.py new file mode 100644 index 0000000000000..37fbbe5ff72c4 --- /dev/null +++ b/tests/integration_tests/document_loaders/test_geodataframe.py @@ -0,0 +1,41 @@ +from typing import TYPE_CHECKING + +import geopandas +import pytest + +from langchain.document_loaders import GeoDataFrameLoader +from langchain.schema import Document + +if TYPE_CHECKING: + from geopandas import GeoDataFrame +else: + GeoDataFrame = "geopandas.GeoDataFrame" + + +@pytest.mark.requires("geopandas") +def sample_gdf() -> GeoDataFrame: + path_to_data = geopandas.datasets.get_path("nybb") + gdf = geopandas.read_file(path_to_data) + gdf["area"] = gdf.area + gdf["crs"] = gdf.crs.to_string() + return gdf.head(2) + + +@pytest.mark.requires("geopandas") +def test_load_returns_list_of_documents(sample_gdf: GeoDataFrame) -> None: + loader = GeoDataFrameLoader(sample_gdf) + docs = loader.load() + assert isinstance(docs, list) + assert all(isinstance(doc, Document) for doc in docs) + assert len(docs) == 2 + + +@pytest.mark.requires("geopandas") +def test_load_converts_dataframe_columns_to_document_metadata( + sample_gdf: GeoDataFrame, +) -> None: + loader = GeoDataFrameLoader(sample_gdf) + docs = loader.load() + for i, doc in enumerate(docs): + assert doc.metadata["area"] == sample_gdf.loc[i, "area"] + assert doc.metadata["crs"] == sample_gdf.loc[i, "crs"]