diff --git a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/output_parser.py b/libs/experimental/langchain_experimental/autonomous_agents/autogpt/output_parser.py index e060495d73045..f7f346e1a8a5e 100644 --- a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/output_parser.py +++ b/libs/experimental/langchain_experimental/autonomous_agents/autogpt/output_parser.py @@ -7,14 +7,20 @@ class AutoGPTAction(NamedTuple): + """Action for AutoGPT.""" + name: str + """Name of the action.""" args: Dict + """Arguments for the action.""" class BaseAutoGPTOutputParser(BaseOutputParser): + """Base class for AutoGPT output parsers.""" + @abstractmethod def parse(self, text: str) -> AutoGPTAction: - """Return AutoGPTAction""" + """Parse text and return AutoGPTAction""" def preprocess_json_input(input_str: str) -> str: @@ -36,6 +42,8 @@ def preprocess_json_input(input_str: str) -> str: class AutoGPTOutputParser(BaseAutoGPTOutputParser): + """Output parser for AutoGPT.""" + def parse(self, text: str) -> AutoGPTAction: try: parsed = json.loads(text, strict=False) diff --git a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/prompt_generator.py b/libs/experimental/langchain_experimental/autonomous_agents/autogpt/prompt_generator.py index b8014eb94359e..dbed688e4df5f 100644 --- a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/prompt_generator.py +++ b/libs/experimental/langchain_experimental/autonomous_agents/autogpt/prompt_generator.py @@ -123,7 +123,7 @@ def generate_prompt_string(self) -> str: def get_prompt(tools: List[BaseTool]) -> str: - """This function generates a prompt string. + """Generate a prompt string. It includes various constraints, commands, resources, and performance evaluations. diff --git a/libs/experimental/langchain_experimental/cpal/constants.py b/libs/experimental/langchain_experimental/cpal/constants.py index 1ab620130d25d..8d51af705b5a1 100644 --- a/libs/experimental/langchain_experimental/cpal/constants.py +++ b/libs/experimental/langchain_experimental/cpal/constants.py @@ -2,6 +2,8 @@ class Constant(Enum): + """Enum for constants used in the CPAL.""" + narrative_input = "narrative_input" chain_answer = "chain_answer" # natural language answer chain_data = "chain_data" # pydantic instance diff --git a/libs/langchain/langchain/callbacks/openai_info.py b/libs/langchain/langchain/callbacks/openai_info.py index 37c0ee10da9bc..ba94445c31889 100644 --- a/libs/langchain/langchain/callbacks/openai_info.py +++ b/libs/langchain/langchain/callbacks/openai_info.py @@ -55,6 +55,7 @@ def standardize_model_name( ) -> str: """ Standardize the model name to a format that can be used in the OpenAI API. + Args: model_name: Model name to standardize. is_completion: Whether the model is used for completion or not. diff --git a/libs/langchain/langchain/chains/query_constructor/parser.py b/libs/langchain/langchain/chains/query_constructor/parser.py index 7d2df316288a5..8e685786d4561 100644 --- a/libs/langchain/langchain/chains/query_constructor/parser.py +++ b/libs/langchain/langchain/chains/query_constructor/parser.py @@ -53,9 +53,7 @@ def v_args(*args: Any, **kwargs: Any) -> Any: # type: ignore @v_args(inline=True) class QueryTransformer(Transformer): - """Transforms a query string into an IR representation - (intermediate representation). - """ + """Transforms a query string into an intermediate representation.""" def __init__( self, diff --git a/libs/langchain/langchain/chat_models/base.py b/libs/langchain/langchain/chat_models/base.py index a7844e38c41b0..36023dfd847c1 100644 --- a/libs/langchain/langchain/chat_models/base.py +++ b/libs/langchain/langchain/chat_models/base.py @@ -33,11 +33,16 @@ def _get_verbosity() -> bool: class BaseChatModel(BaseLanguageModel, ABC): + """Base class for chat models.""" + cache: Optional[bool] = None + """Whether to cache the response.""" verbose: bool = Field(default_factory=_get_verbosity) """Whether to print out response text.""" callbacks: Callbacks = Field(default=None, exclude=True) + """Callbacks to add to the run trace.""" callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True) + """Callback manager to add to the run trace.""" tags: Optional[List[str]] = Field(default=None, exclude=True) """Tags to add to the run trace.""" metadata: Optional[Dict[str, Any]] = Field(default=None, exclude=True) @@ -441,6 +446,8 @@ def dict(self, **kwargs: Any) -> Dict: class SimpleChatModel(BaseChatModel): + """Simple Chat Model.""" + def _generate( self, messages: List[BaseMessage], diff --git a/libs/langchain/langchain/document_loaders/notiondb.py b/libs/langchain/langchain/document_loaders/notiondb.py index 55631eb9015bc..16915fba0e2da 100644 --- a/libs/langchain/langchain/document_loaders/notiondb.py +++ b/libs/langchain/langchain/document_loaders/notiondb.py @@ -15,6 +15,7 @@ class NotionDBLoader(BaseLoader): """Notion DB Loader. + Reads content from pages within a Notion Database. Args: integration_token (str): Notion integration token. diff --git a/libs/langchain/langchain/document_loaders/parsers/grobid.py b/libs/langchain/langchain/document_loaders/parsers/grobid.py index c9fe288edd5c5..fd8c563d9111b 100644 --- a/libs/langchain/langchain/document_loaders/parsers/grobid.py +++ b/libs/langchain/langchain/document_loaders/parsers/grobid.py @@ -8,6 +8,8 @@ class ServerUnavailableException(Exception): + """Exception raised when the GROBID server is unavailable.""" + pass diff --git a/libs/langchain/langchain/document_loaders/rocksetdb.py b/libs/langchain/langchain/document_loaders/rocksetdb.py index f78de25439118..4355c0a74eb64 100644 --- a/libs/langchain/langchain/document_loaders/rocksetdb.py +++ b/libs/langchain/langchain/document_loaders/rocksetdb.py @@ -5,10 +5,13 @@ def default_joiner(docs: List[Tuple[str, Any]]) -> str: + """Default joiner for content columns.""" return "\n".join([doc[1] for doc in docs]) class ColumnNotFoundError(Exception): + """Column not found error.""" + def __init__(self, missing_key: str, query: str): super().__init__(f'Column "{missing_key}" not selected in query:\n{query}') diff --git a/libs/langchain/langchain/evaluation/agents/trajectory_eval_chain.py b/libs/langchain/langchain/evaluation/agents/trajectory_eval_chain.py index 2d532e8e5022f..63b8fb617ef84 100644 --- a/libs/langchain/langchain/evaluation/agents/trajectory_eval_chain.py +++ b/libs/langchain/langchain/evaluation/agents/trajectory_eval_chain.py @@ -36,6 +36,8 @@ class TrajectoryEval(NamedTuple): class TrajectoryOutputParser(BaseOutputParser): + """Trajectory output parser.""" + @property def _type(self) -> str: return "agent_trajectory" diff --git a/libs/langchain/langchain/experimental/autonomous_agents/autogpt/memory.py b/libs/langchain/langchain/experimental/autonomous_agents/autogpt/memory.py index 5c48674a17923..e19dfbf014659 100644 --- a/libs/langchain/langchain/experimental/autonomous_agents/autogpt/memory.py +++ b/libs/langchain/langchain/experimental/autonomous_agents/autogpt/memory.py @@ -7,6 +7,8 @@ class AutoGPTMemory(BaseChatMemory): + """Memory for AutoGPT.""" + retriever: VectorStoreRetriever = Field(exclude=True) """VectorStoreRetriever object to connect to.""" diff --git a/libs/langchain/langchain/experimental/autonomous_agents/baby_agi/task_creation.py b/libs/langchain/langchain/experimental/autonomous_agents/baby_agi/task_creation.py index 47834b64634a9..48b54b1aa3c05 100644 --- a/libs/langchain/langchain/experimental/autonomous_agents/baby_agi/task_creation.py +++ b/libs/langchain/langchain/experimental/autonomous_agents/baby_agi/task_creation.py @@ -3,7 +3,7 @@ class TaskCreationChain(LLMChain): - """Chain to generates tasks.""" + """Chain generating tasks.""" @classmethod def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain: diff --git a/libs/langchain/langchain/experimental/generative_agents/generative_agent.py b/libs/langchain/langchain/experimental/generative_agents/generative_agent.py index 3d3db854c4355..c713851939cae 100644 --- a/libs/langchain/langchain/experimental/generative_agents/generative_agent.py +++ b/libs/langchain/langchain/experimental/generative_agents/generative_agent.py @@ -11,11 +11,10 @@ class GenerativeAgent(BaseModel): - """A character with memory and innate characteristics.""" + """An Agent as a character with memory and innate characteristics.""" name: str """The character's name.""" - age: Optional[int] = None """The optional age of the character.""" traits: str = "N/A" @@ -29,13 +28,10 @@ class GenerativeAgent(BaseModel): verbose: bool = False summary: str = "" #: :meta private: """Stateful self-summary generated via reflection on the character's memory.""" - summary_refresh_seconds: int = 3600 #: :meta private: """How frequently to re-generate the summary.""" - last_refreshed: datetime = Field(default_factory=datetime.now) # : :meta private: """The last time the character's summary was regenerated.""" - daily_summaries: List[str] = Field(default_factory=list) # : :meta private: """Summary of the events in the plan that the agent took.""" diff --git a/libs/langchain/langchain/experimental/generative_agents/memory.py b/libs/langchain/langchain/experimental/generative_agents/memory.py index 67303f9c10657..241b3da610cae 100644 --- a/libs/langchain/langchain/experimental/generative_agents/memory.py +++ b/libs/langchain/langchain/experimental/generative_agents/memory.py @@ -14,24 +14,21 @@ class GenerativeAgentMemory(BaseMemory): + """Memory for the generative agent.""" + llm: BaseLanguageModel """The core language model.""" - memory_retriever: TimeWeightedVectorStoreRetriever """The retriever to fetch related memories.""" verbose: bool = False - reflection_threshold: Optional[float] = None """When aggregate_importance exceeds reflection_threshold, stop to reflect.""" - current_plan: List[str] = [] """The current plan of the agent.""" - # A weight of 0.15 makes this less important than it # would be otherwise, relative to salience and time importance_weight: float = 0.15 """How much weight to assign the memory importance.""" - aggregate_importance: float = 0.0 # : :meta private: """Track the sum of the 'importance' of recent memories. diff --git a/libs/langchain/langchain/experimental/llms/jsonformer_decoder.py b/libs/langchain/langchain/experimental/llms/jsonformer_decoder.py index 98a57dda62758..a17755ff739b4 100644 --- a/libs/langchain/langchain/experimental/llms/jsonformer_decoder.py +++ b/libs/langchain/langchain/experimental/llms/jsonformer_decoder.py @@ -18,7 +18,7 @@ def import_jsonformer() -> jsonformer: try: import jsonformer except ImportError: - raise ValueError( + raise ImportError( "Could not import jsonformer python package. " "Please install it with `pip install jsonformer`." ) @@ -26,6 +26,11 @@ def import_jsonformer() -> jsonformer: class JsonFormer(HuggingFacePipeline): + """Jsonformer wrapped LLM using HuggingFace Pipeline API. + + This pipeline is experimental and not yet stable. + """ + json_schema: dict = Field(..., description="The JSON Schema to complete.") max_new_tokens: int = Field( default=200, description="Maximum number of new tokens to generate." diff --git a/libs/langchain/langchain/experimental/llms/rellm_decoder.py b/libs/langchain/langchain/experimental/llms/rellm_decoder.py index 48a98fae01a7c..799306e98a202 100644 --- a/libs/langchain/langchain/experimental/llms/rellm_decoder.py +++ b/libs/langchain/langchain/experimental/llms/rellm_decoder.py @@ -24,7 +24,7 @@ def import_rellm() -> rellm: try: import rellm except ImportError: - raise ValueError( + raise ImportError( "Could not import rellm python package. " "Please install it with `pip install rellm`." ) @@ -32,6 +32,8 @@ def import_rellm() -> rellm: class RELLM(HuggingFacePipeline): + """RELLM wrapped LLM using HuggingFace Pipeline API.""" + regex: RegexPattern = Field(..., description="The structured format to complete.") max_new_tokens: int = Field( default=200, description="Maximum number of new tokens to generate." diff --git a/libs/langchain/langchain/experimental/plan_and_execute/agent_executor.py b/libs/langchain/langchain/experimental/plan_and_execute/agent_executor.py index dccf9eb200851..a4780a9660996 100644 --- a/libs/langchain/langchain/experimental/plan_and_execute/agent_executor.py +++ b/libs/langchain/langchain/experimental/plan_and_execute/agent_executor.py @@ -13,9 +13,14 @@ class PlanAndExecute(Chain): + """Plan and execute a chain of steps.""" + planner: BasePlanner + """The planner to use.""" executor: BaseExecutor + """The executor to use.""" step_container: BaseStepContainer = Field(default_factory=ListStepContainer) + """The step container to use.""" input_key: str = "input" output_key: str = "output" diff --git a/libs/langchain/langchain/experimental/plan_and_execute/executors/base.py b/libs/langchain/langchain/experimental/plan_and_execute/executors/base.py index 6a06fa08728f1..db114f8b83a60 100644 --- a/libs/langchain/langchain/experimental/plan_and_execute/executors/base.py +++ b/libs/langchain/langchain/experimental/plan_and_execute/executors/base.py @@ -9,6 +9,8 @@ class BaseExecutor(BaseModel): + """Base executor.""" + @abstractmethod def step( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any @@ -19,11 +21,14 @@ def step( async def astep( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any ) -> StepResponse: - """Take step.""" + """Take async step.""" class ChainExecutor(BaseExecutor): + """Chain executor.""" + chain: Chain + """The chain to use.""" def step( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any diff --git a/libs/langchain/langchain/experimental/plan_and_execute/planners/base.py b/libs/langchain/langchain/experimental/plan_and_execute/planners/base.py index b91109bab2b86..226046c55f049 100644 --- a/libs/langchain/langchain/experimental/plan_and_execute/planners/base.py +++ b/libs/langchain/langchain/experimental/plan_and_execute/planners/base.py @@ -9,6 +9,8 @@ class BasePlanner(BaseModel): + """Base planner.""" + @abstractmethod def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan: """Given input, decide what to do.""" @@ -17,13 +19,18 @@ def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan async def aplan( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any ) -> Plan: - """Given input, decide what to do.""" + """Given input, asynchronously decide what to do.""" class LLMPlanner(BasePlanner): + """LLM planner.""" + llm_chain: LLMChain + """The LLM chain to use.""" output_parser: PlanOutputParser + """The output parser to use.""" stop: Optional[List] = None + """The stop list to use.""" def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan: """Given input, decide what to do.""" @@ -33,7 +40,7 @@ def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan async def aplan( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any ) -> Plan: - """Given input, decide what to do.""" + """Given input, asynchronously decide what to do.""" llm_response = await self.llm_chain.arun( **inputs, stop=self.stop, callbacks=callbacks ) diff --git a/libs/langchain/langchain/experimental/plan_and_execute/planners/chat_planner.py b/libs/langchain/langchain/experimental/plan_and_execute/planners/chat_planner.py index 68eb5dad205c2..0a2c4f7923f6a 100644 --- a/libs/langchain/langchain/experimental/plan_and_execute/planners/chat_planner.py +++ b/libs/langchain/langchain/experimental/plan_and_execute/planners/chat_planner.py @@ -24,6 +24,8 @@ class PlanningOutputParser(PlanOutputParser): + """Planning output parser.""" + def parse(self, text: str) -> Plan: steps = [Step(value=v) for v in re.split("\n\s*\d+\. ", text)[1:]] return Plan(steps=steps) @@ -34,6 +36,7 @@ def load_chat_planner( ) -> LLMPlanner: """ Load a chat planner. + Args: llm: Language model. system_prompt: System prompt. diff --git a/libs/langchain/langchain/experimental/plan_and_execute/schema.py b/libs/langchain/langchain/experimental/plan_and_execute/schema.py index cb5b4cea3c633..b50b79e2bb094 100644 --- a/libs/langchain/langchain/experimental/plan_and_execute/schema.py +++ b/libs/langchain/langchain/experimental/plan_and_execute/schema.py @@ -7,18 +7,29 @@ class Step(BaseModel): + """Step.""" + value: str + """The value.""" class Plan(BaseModel): + """Plan.""" + steps: List[Step] + """The steps.""" class StepResponse(BaseModel): + """Step response.""" + response: str + """The response.""" class BaseStepContainer(BaseModel): + """Base step container.""" + @abstractmethod def add_step(self, step: Step, step_response: StepResponse) -> None: """Add step and step response to the container.""" @@ -29,7 +40,10 @@ def get_final_response(self) -> str: class ListStepContainer(BaseStepContainer): + """List step container.""" + steps: List[Tuple[Step, StepResponse]] = Field(default_factory=list) + """The steps.""" def add_step(self, step: Step, step_response: StepResponse) -> None: self.steps.append((step, step_response)) @@ -42,6 +56,8 @@ def get_final_response(self) -> str: class PlanOutputParser(BaseOutputParser): + """Plan output parser.""" + @abstractmethod def parse(self, text: str) -> Plan: """Parse into a plan.""" diff --git a/libs/langchain/langchain/text_splitter.py b/libs/langchain/langchain/text_splitter.py index 8ced10834a81c..0b59064009905 100644 --- a/libs/langchain/langchain/text_splitter.py +++ b/libs/langchain/langchain/text_splitter.py @@ -259,7 +259,7 @@ async def atransform_documents( class CharacterTextSplitter(TextSplitter): - """Implementation of splitting text that looks at characters.""" + """Splitting text that looks at characters.""" def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None: """Create a new TextSplitter.""" @@ -290,7 +290,7 @@ class HeaderType(TypedDict): class MarkdownHeaderTextSplitter: - """Implementation of splitting markdown files based on specified headers.""" + """Splitting markdown files based on specified headers.""" def __init__( self, headers_to_split_on: List[Tuple[str, str]], return_each_line: bool = False @@ -443,7 +443,7 @@ class Tokenizer: def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> List[str]: - """Split incoming text and return chunks.""" + """Split incoming text and return chunks using tokenizer.""" splits: List[str] = [] input_ids = tokenizer.encode(text) start_idx = 0 @@ -458,7 +458,7 @@ def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> List[str]: class TokenTextSplitter(TextSplitter): - """Implementation of splitting text that looks at tokens.""" + """Splitting text to tokens using model tokenizer.""" def __init__( self, @@ -506,7 +506,7 @@ def _encode(_text: str) -> List[int]: class SentenceTransformersTokenTextSplitter(TextSplitter): - """Implementation of splitting text that looks at tokens.""" + """Splitting text to tokens using sentence model tokenizer.""" def __init__( self, @@ -599,7 +599,7 @@ class Language(str, Enum): class RecursiveCharacterTextSplitter(TextSplitter): - """Implementation of splitting text that looks at characters. + """Splitting text by recursively look at characters. Recursively tries to split by different characters to find one that works. @@ -1004,7 +1004,7 @@ def get_separators_for_language(language: Language) -> List[str]: class NLTKTextSplitter(TextSplitter): - """Implementation of splitting text that looks at sentences using NLTK.""" + """Splitting text using NLTK package.""" def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None: """Initialize the NLTK splitter.""" @@ -1027,7 +1027,7 @@ def split_text(self, text: str) -> List[str]: class SpacyTextSplitter(TextSplitter): - """Implementation of splitting text that looks at sentences using Spacy. + """Splitting text using Spacy package. Per default, Spacy's `en_core_web_sm` model is used. For a faster, but diff --git a/libs/langchain/langchain/utilities/brave_search.py b/libs/langchain/langchain/utilities/brave_search.py index 30d5994c70607..0e870b8f62d76 100644 --- a/libs/langchain/langchain/utilities/brave_search.py +++ b/libs/langchain/langchain/utilities/brave_search.py @@ -8,9 +8,14 @@ class BraveSearchWrapper(BaseModel): + """Wrapper around the Brave search engine.""" + api_key: str + """The API key to use for the Brave search engine.""" search_kwargs: dict = Field(default_factory=dict) + """Additional keyword arguments to pass to the search request.""" base_url = "https://api.search.brave.com/res/v1/web/search" + """The base URL for the Brave search engine.""" def run(self, query: str) -> str: """Query the Brave search engine and return the results as a JSON string. diff --git a/libs/langchain/langchain/utilities/dataforseo_api_search.py b/libs/langchain/langchain/utilities/dataforseo_api_search.py index a197a12d50a79..b8fc9ce864fa3 100644 --- a/libs/langchain/langchain/utilities/dataforseo_api_search.py +++ b/libs/langchain/langchain/utilities/dataforseo_api_search.py @@ -10,6 +10,8 @@ class DataForSeoAPIWrapper(BaseModel): + """Wrapper around the DataForSeo API.""" + class Config: """Configuration for this pydantic object.""" @@ -25,13 +27,21 @@ class Config: "se_type": "organic", } ) + """Default parameters to use for the DataForSEO SERP API.""" params: dict = Field(default={}) + """Additional parameters to pass to the DataForSEO SERP API.""" api_login: Optional[str] = None + """The API login to use for the DataForSEO SERP API.""" api_password: Optional[str] = None + """The API password to use for the DataForSEO SERP API.""" json_result_types: Optional[list] = None + """The JSON result types.""" json_result_fields: Optional[list] = None + """The JSON result fields.""" top_count: Optional[int] = None + """The number of top results to return.""" aiosession: Optional[aiohttp.ClientSession] = None + """The aiohttp session to use for the DataForSEO SERP API.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/langchain/langchain/utilities/python.py b/libs/langchain/langchain/utilities/python.py index 06f9cea43107f..348fd274b6ca0 100644 --- a/libs/langchain/langchain/utilities/python.py +++ b/libs/langchain/langchain/utilities/python.py @@ -12,7 +12,7 @@ @functools.lru_cache(maxsize=None) def warn_once() -> None: - # Warn that the PythonREPL + """Warn once about the dangers of PythonREPL.""" logger.warning("Python REPL can execute arbitrary code. Use with caution.") diff --git a/libs/langchain/langchain/vectorstores/azuresearch.py b/libs/langchain/langchain/vectorstores/azuresearch.py index 8a0491595cc72..09719a5ff2526 100644 --- a/libs/langchain/langchain/vectorstores/azuresearch.py +++ b/libs/langchain/langchain/vectorstores/azuresearch.py @@ -166,6 +166,8 @@ def _get_search_client( class AzureSearch(VectorStore): + """Azure Cognitive Search vector store.""" + def __init__( self, azure_search_endpoint: str, @@ -481,9 +483,15 @@ def from_texts( class AzureSearchVectorStoreRetriever(BaseRetriever): + """Retriever that uses Azure Search to find similar documents.""" + vectorstore: AzureSearch + """Azure Search instance used to find similar documents.""" search_type: str = "hybrid" + """Type of search to perform. Options are "similarity", "hybrid", + "semantic_hybrid".""" k: int = 4 + """Number of documents to return.""" class Config: """Configuration for this pydantic object.""" diff --git a/libs/langchain/langchain/vectorstores/base.py b/libs/langchain/langchain/vectorstores/base.py index 4911c87a66ffb..7b69d3a437112 100644 --- a/libs/langchain/langchain/vectorstores/base.py +++ b/libs/langchain/langchain/vectorstores/base.py @@ -460,9 +460,14 @@ def as_retriever(self, **kwargs: Any) -> VectorStoreRetriever: class VectorStoreRetriever(BaseRetriever): + """Retriever class for VectorStore.""" + vectorstore: VectorStore + """VectorStore to use for retrieval.""" search_type: str = "similarity" + """Type of search to perform. Defaults to "similarity".""" search_kwargs: dict = Field(default_factory=dict) + """Keyword arguments to pass to the search function.""" allowed_search_types: ClassVar[Collection[str]] = ( "similarity", "similarity_score_threshold", diff --git a/libs/langchain/langchain/vectorstores/pgembedding.py b/libs/langchain/langchain/vectorstores/pgembedding.py index 8159e45444546..02e1936a724f4 100644 --- a/libs/langchain/langchain/vectorstores/pgembedding.py +++ b/libs/langchain/langchain/vectorstores/pgembedding.py @@ -94,6 +94,7 @@ class QueryResult: class PGEmbedding(VectorStore): """ VectorStore implementation using Postgres and the pg_embedding extension. + pg_embedding uses sequential scan by default. but you can create a HNSW index using the create_hnsw_index method. - `connection_string` is a postgres connection string. diff --git a/libs/langchain/langchain/vectorstores/redis.py b/libs/langchain/langchain/vectorstores/redis.py index 0e425151d860f..7568f8ed9da14 100644 --- a/libs/langchain/langchain/vectorstores/redis.py +++ b/libs/langchain/langchain/vectorstores/redis.py @@ -612,10 +612,16 @@ def as_retriever(self, **kwargs: Any) -> RedisVectorStoreRetriever: class RedisVectorStoreRetriever(VectorStoreRetriever): + """Retriever for Redis VectorStore.""" + vectorstore: Redis + """Redis VectorStore.""" search_type: str = "similarity" + """Type of search to perform. Can be either 'similarity' or 'similarity_limit'.""" k: int = 4 + """Number of documents to return.""" score_threshold: float = 0.4 + """Score threshold for similarity_limit search.""" class Config: """Configuration for this pydantic object.""" diff --git a/libs/langchain/langchain/vectorstores/utils.py b/libs/langchain/langchain/vectorstores/utils.py index f7a64389e1b44..539a1feda5ca1 100644 --- a/libs/langchain/langchain/vectorstores/utils.py +++ b/libs/langchain/langchain/vectorstores/utils.py @@ -9,6 +9,9 @@ class DistanceStrategy(str, Enum): + """Enumerator of the Distance strategies for calculating distances + between vectors.""" + EUCLIDEAN_DISTANCE = "EUCLIDEAN_DISTANCE" MAX_INNER_PRODUCT = "MAX_INNER_PRODUCT" DOT_PRODUCT = "DOT_PRODUCT" diff --git a/libs/langchain/langchain/vectorstores/vectara.py b/libs/langchain/langchain/vectorstores/vectara.py index 9a1f4da2623ab..21f3aa4e50cf2 100644 --- a/libs/langchain/langchain/vectorstores/vectara.py +++ b/libs/langchain/langchain/vectorstores/vectara.py @@ -412,7 +412,10 @@ def as_retriever(self, **kwargs: Any) -> VectaraRetriever: class VectaraRetriever(VectorStoreRetriever): + """Retriever class for Vectara.""" + vectorstore: Vectara + """Vectara vectorstore.""" search_kwargs: dict = Field( default_factory=lambda: { "lambda_val": 0.025,