This repository was archived by the owner on Apr 16, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction.py
155 lines (123 loc) · 5.38 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import pathlib
import importlib
from conf import default, general, paths
import os
import time
import sys
from utils.dataloader import TreePredDataSet
from torch.utils.data import DataLoader
import torch
from tqdm import tqdm
import numpy as np
from osgeo import ogr, gdal, gdalconst
from utils.ops import load_dict, save_geotiff
parser = argparse.ArgumentParser(
description='Train NUMBER_MODELS models based in the same parameters'
)
parser.add_argument( # Experiment number
'-e', '--experiment',
type = int,
default = 3,
help = 'The number of the experiment'
)
parser.add_argument( # batch size
'-b', '--batch-size',
type = int,
default = default.PREDICTION_BATCH_SIZE,
help = 'The number of samples of each batch'
)
parser.add_argument( # Number of models to be trained
'-n', '--number-models',
type = int,
default = 1,
help = 'The number models to be trained from the scratch'
)
parser.add_argument( # Experiment path
'-x', '--experiments-path',
type = pathlib.Path,
default = paths.PATH_EXPERIMENTS,
help = 'The patch to data generated by all experiments'
)
parser.add_argument( # Base image to generate geotiff pred
'-i', '--base-image',
type = pathlib.Path,
default = paths.PATH_IMG,
help = 'The patch to base image to generate Geotiff prediction'
)
args = parser.parse_args()
exp_path = os.path.join(str(args.experiments_path), f'exp_{args.experiment}')
logs_path = os.path.join(exp_path, f'logs')
models_path = os.path.join(exp_path, f'models')
visual_path = os.path.join(exp_path, f'visual')
predicted_path = os.path.join(exp_path, f'predicted')
results_path = os.path.join(exp_path, f'results')
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
outfile = os.path.join(logs_path, f'pred_{args.experiment}.txt')
with open(outfile, 'w') as sys.stdout:
#torch.set_num_threads(9)
model_m =importlib.import_module(f'conf.model_{args.experiment}')
model, lidar_bands = model_m.get_model()
model.to(device)
print(model)
print(f'LiDAR bands: {lidar_bands}')
model_path = os.path.join(models_path, 'model.pt')
model.load_state_dict(torch.load(model_path))
dataset = TreePredDataSet(device=device, lidar_bands = lidar_bands)
overlaps = general.PREDICTION_OVERLAPS
pred_global_sum = np.zeros(dataset.original_shape+(general.N_CLASSES,))
for overlap in overlaps:
print(f'Predicting overlap {overlap}')
dataset = TreePredDataSet(device=device, overlap = overlap, lidar_bands = lidar_bands)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False)
t0 = time.perf_counter()
pbar = tqdm(dataloader)
preds = None
for X in pbar:
with torch.no_grad():
pred = model(X).to('cpu')
if preds is None:
preds = pred#.to('cpu')
else:
preds = torch.cat((preds, pred), dim=0)
#preds = preds.view((dataset.original_blocks_shape)).numpy().astype(np.uint8)
preds = np.moveaxis(preds.numpy().astype(np.uint8), 1, -1)
pred_sum = np.zeros(dataset.padded_shape+(general.N_CLASSES,)).reshape((-1, general.N_CLASSES))
pred_count = np.zeros(dataset.padded_shape+(general.N_CLASSES,)).reshape((-1, general.N_CLASSES))
one_window = np.ones((general.PATCH_SIZE, general.PATCH_SIZE, general.N_CLASSES))
for idx, idx_patch in enumerate(tqdm(dataset.idx_patches)):
pred_sum[idx_patch] += preds[idx]
pred_count[idx_patch] += one_window
pred_sum = pred_sum.reshape(dataset.padded_shape+(general.N_CLASSES,))
pred_count = pred_count.reshape(dataset.padded_shape+(general.N_CLASSES,))
pred_sum = pred_sum[general.PATCH_SIZE:-general.PATCH_SIZE,general.PATCH_SIZE:-general.PATCH_SIZE,:]
pred_count = pred_count[general.PATCH_SIZE:-general.PATCH_SIZE,general.PATCH_SIZE:-general.PATCH_SIZE,:]
pred_global_sum += pred_sum / pred_count
pred_global = pred_global_sum / len(overlaps)
pred_b = pred_global.argmax(axis=-1).astype(np.uint8)
np.save(os.path.join(predicted_path, 'pred.npy'), pred_b)
np.save(os.path.join(predicted_path, 'pred_prob.npy'), pred_global.astype(np.float16))
remap_dict = load_dict(os.path.join(paths.PREPARED_PATH, 'map.data'))
print(remap_dict)
pred_b_remaped = np.empty_like(pred_b)
for dest, source in remap_dict.items():
print(f'{dest}-{source}')
pred_b_remaped[pred_b==dest] = source
save_geotiff(str(args.base_image), os.path.join(predicted_path, f'pred_{args.experiment}.tif'), pred_b_remaped, dtype = 'byte')
save_geotiff(str(args.base_image), os.path.join(predicted_path, f'pred_probs_{args.experiment}.tif'), pred_global, dtype = 'float')
'''base_data = gdal.Open(str(args.base_image), gdalconst.GA_ReadOnly)
geo_transform = base_data.GetGeoTransform()
x_res = base_data.RasterXSize
y_res = base_data.RasterYSize
crs = base_data.GetSpatialRef()
proj = base_data.GetProjection()
output = os.path.join(predicted_path, f'pred.tif')
target_ds = gdal.GetDriverByName('GTiff').Create(output, x_res, y_res, 1, gdal.GDT_Byte)
target_ds.SetGeoTransform(geo_transform)
target_ds.SetSpatialRef(crs)
target_ds.SetProjection(proj)
target_ds.GetRasterBand(1).WriteArray(pred_b_remaped)
target_ds = None
print('Done')
'''