-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun.py
executable file
·874 lines (769 loc) · 39.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
import os, sys, copy, glob, json, time, random, argparse
from shutil import copyfile
from tqdm import tqdm, trange
import math
import mmcv
import imageio
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from lib import utils, dvgo, dmpigo, dpvgo, dmsigo
from lib.load_data import load_data
from torch_efficient_distloss import flatten_eff_distloss
from PIL import Image
import matplotlib.pyplot as plt
from datetime import datetime
def config_parser():
'''Define command line arguments
'''
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', required=True,
help='config file path')
parser.add_argument("--seed", type=int, default=777,
help='Random seed')
parser.add_argument("--no_reload", action='store_true',
help='do not reload weights from saved ckpt')
parser.add_argument("--no_reload_optimizer", action='store_true',
help='do not reload optimizer state from saved ckpt')
parser.add_argument("--ft_path", type=str, default='',
help='specific weights npy file to reload for coarse network')
# testing options
parser.add_argument("--render_only", action='store_true',
help='do not optimize, reload weights and render out render_poses path')
parser.add_argument("--render_test", action='store_true')
parser.add_argument("--render_train", action='store_true')
parser.add_argument("--render_video", action='store_true')
parser.add_argument("--render_image", action='store_true')
parser.add_argument("--render_depth", action='store_true')
parser.add_argument("--render_video_flipy", action='store_true')
parser.add_argument("--render_video_rot90", default=0, type=int)
parser.add_argument("--render_video_factor", type=float, default=0,
help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')
parser.add_argument("--dump_images", action='store_true')
parser.add_argument("--eval_ssim", action='store_true')
parser.add_argument("--edit", type=str, default='', help='filename of edited k0_xxx.png')
parser.add_argument("--render_panorama", action='store_true')
# logging/saving options
parser.add_argument("--i_print", type=int, default=500,
help='frequency of console printout and metric loggin')
parser.add_argument("--i_weights", type=int, default=100000,
help='frequency of weight ckpt saving')
return parser
@torch.no_grad()
def render_viewpoints(model, render_poses, HW, Ks, ndc, render_kwargs,
gt_imgs=None, savedir=None, dump_images=False,
render_factor=0, render_video_flipy=False, render_video_rot90=0,
eval_ssim=False, render_panorama=False, log_metrics=False, dump_depths=False):
'''Render images for the given viewpoints; run evaluation if gt given.
'''
assert len(render_poses) == len(HW) and len(HW) == len(Ks)
if render_factor!=0:
HW = np.copy(HW)
Ks = np.copy(Ks)
HW = (HW/render_factor).astype(int)
Ks[:, :2, :3] /= render_factor
rgbs = []
depths = []
bgmaps = []
psnrs = []
ssims = []
for i, c2w in enumerate(tqdm(render_poses)):
H, W = HW[i]
K = Ks[i]
c2w = torch.Tensor(c2w)
if not render_panorama:
rays_o, rays_d, viewdirs = dvgo.get_rays_of_a_view(
H, W, K, c2w, ndc, inverse_y=render_kwargs['inverse_y'],
flip_x=cfg.data.flip_x, flip_y=cfg.data.flip_y)
else:
rays_o, rays_d, viewdirs = dvgo.get_ray_of_a_panorama(
H, W, c2w
)
keys = ['rgb_marched', 'depth', 'alphainv_last']
rays_o = rays_o.flatten(0,-2)
rays_d = rays_d.flatten(0,-2)
viewdirs = viewdirs.flatten(0,-2)
render_result_chunks = [
{k: v for k, v in model(ro, rd, vd, **render_kwargs).items() if k in keys}
for ro, rd, vd in zip(rays_o.split(8192, 0), rays_d.split(8192, 0), viewdirs.split(8192, 0))
]
render_result = {
k: torch.cat([ret[k] for ret in render_result_chunks]).reshape(H,W,-1)
for k in render_result_chunks[0].keys()
}
rgb = render_result['rgb_marched'].cpu().numpy()
depth = render_result['depth'].cpu().numpy()
bgmap = render_result['alphainv_last'].cpu().numpy()
rgbs.append(rgb)
depths.append(depth)
bgmaps.append(bgmap)
if i==0:
print('Testing', rgb.shape)
if gt_imgs is not None and render_factor==0:
p = -10. * np.log10(np.mean(np.square(rgb - gt_imgs[i])))
psnrs.append(p)
if eval_ssim:
ssims.append(utils.rgb_ssim(rgb, gt_imgs[i], max_val=1))
if len(psnrs):
print('Testing psnr', np.mean(psnrs), '(avg)')
if eval_ssim: print('Testing ssim', np.mean(ssims), '(avg)')
if log_metrics:
f = open(os.path.join(savedir, 'metrics.txt'), "w")
f.write('PSNR: {:.6f}'.format(np.mean(psnrs)))
if eval_ssim: f.write('SSIM: {:.6f}'.format(np.mean(ssims)))
f.close()
if render_video_flipy:
for i in range(len(rgbs)):
rgbs[i] = np.flip(rgbs[i], axis=0)
depths[i] = np.flip(depths[i], axis=0)
bgmaps[i] = np.flip(bgmaps[i], axis=0)
if render_video_rot90 != 0:
for i in range(len(rgbs)):
rgbs[i] = np.rot90(rgbs[i], k=render_video_rot90, axes=(0,1))
depths[i] = np.rot90(depths[i], k=render_video_rot90, axes=(0,1))
bgmaps[i] = np.rot90(bgmaps[i], k=render_video_rot90, axes=(0,1))
if savedir is not None and dump_images:
for i in trange(len(rgbs)):
rgb8 = utils.to8b(rgbs[i])
filename = os.path.join(savedir, '{:03d}.png'.format(i))
imageio.imwrite(filename, rgb8)
if savedir is not None and dump_depths:
for i in trange(len(depths)):
filename = os.path.join(savedir, '{:03d}.npy'.format(i))
np.save(filename, depths[i])
depth_vis = depths[i] * (1-bgmaps[i]) + bgmaps[i]
dmin, dmax = np.percentile(depth_vis[bgmaps[i] < 0.1], q=[5, 95])
depth_vis = plt.get_cmap('rainbow')(1 - np.clip((depth_vis - dmin) / (dmax - dmin), 0, 1)).squeeze()[..., :3]
filename = os.path.join(savedir, '{:03d}.png'.format(i))
Image.fromarray(np.uint8(depth_vis * 255)).save(filename)
rgbs = np.array(rgbs)
depths = np.array(depths)
bgmaps = np.array(bgmaps)
return rgbs, depths, bgmaps
def seed_everything():
'''Seed everything for better reproducibility.
(some pytorch operation is non-deterministic like the backprop of grid_samples)
'''
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
def load_everything(args, cfg):
'''Load images / poses / camera settings / data split.
'''
data_dict = load_data(cfg.data)
# remove useless field
kept_keys = {
'hwf', 'HW', 'Ks', 'Ks_render', 'near', 'far', 'near_clip',
'i_train', 'i_val', 'i_test', 'irregular_shape',
'poses', 'render_poses', 'images', 'masks', 'xyz_min', 'xyz_max'}
for k in list(data_dict.keys()):
if k not in kept_keys:
data_dict.pop(k)
# construct data tensor
if data_dict['irregular_shape']:
data_dict['images'] = [torch.FloatTensor(im, device='cpu') for im in data_dict['images']]
else:
data_dict['images'] = torch.FloatTensor(data_dict['images'], device='cpu')
data_dict['poses'] = torch.Tensor(data_dict['poses'])
if data_dict['masks'] is not None:
data_dict['masks'] = torch.Tensor(data_dict['masks'])
return data_dict
def _compute_bbox_by_cam_frustrm_bounded(cfg, HW, Ks, poses, i_train, near, far):
xyz_min = torch.Tensor([np.inf, np.inf, np.inf])
xyz_max = -xyz_min
for (H, W), K, c2w in zip(HW[i_train], Ks[i_train], poses[i_train]):
rays_o, rays_d, viewdirs = dvgo.get_rays_of_a_view(
H=H, W=W, K=K, c2w=c2w,
ndc=cfg.data.ndc, inverse_y=cfg.data.inverse_y,
flip_x=cfg.data.flip_x, flip_y=cfg.data.flip_y)
if cfg.data.ndc:
pts_nf = torch.stack([rays_o+rays_d*near, rays_o+rays_d*far])
else:
pts_nf = torch.stack([rays_o+viewdirs*near, rays_o+viewdirs*far])
xyz_min = torch.minimum(xyz_min, pts_nf.amin((0,1,2)))
xyz_max = torch.maximum(xyz_max, pts_nf.amax((0,1,2)))
return xyz_min, xyz_max
def compute_bbox_by_cam_frustrm(args, cfg, HW, Ks, poses, i_train, near, far, **kwargs):
print('compute_bbox_by_cam_frustrm: start')
if cfg.data.panorama:
xyz_min, xyz_max = -torch.tensor([far, far, far]).float(), torch.tensor([far, far, far]).float()
else:
xyz_min, xyz_max = _compute_bbox_by_cam_frustrm_bounded(
cfg, HW, Ks, poses, i_train, near, far)
print('compute_bbox_by_cam_frustrm: xyz_min', xyz_min)
print('compute_bbox_by_cam_frustrm: xyz_max', xyz_max)
print('compute_bbox_by_cam_frustrm: finish')
return xyz_min, xyz_max
def create_new_model(cfg, cfg_model, cfg_train, xyz_min, xyz_max, uv_min, uv_max, stage, coarse_ckpt_path):
model_kwargs = copy.deepcopy(cfg_model)
num_voxels = model_kwargs.pop('num_voxels')
if len(cfg_train.pg_scale):
num_voxels = int(num_voxels / (2**len(cfg_train.pg_scale)))
if cfg.fine_model_and_render.image_size:
image_size = model_kwargs.pop('image_size')
if len(cfg_train.pg_image_scale):
image_size = (image_size[0] // (2**len(cfg_train.pg_image_scale)), image_size[1] // (2**len(cfg_train.pg_image_scale)))
model_kwargs['image_size'] = image_size
if cfg.fine_model_and_render.equ_size:
equ_size = model_kwargs.pop('equ_size')
if len(cfg_train.pg_equ_scale):
equ_size = (equ_size[0] // (2**len(cfg_train.pg_equ_scale)), equ_size[1] // (2**len(cfg_train.pg_equ_scale)))
model_kwargs['equ_size'] = equ_size
if cfg.fine_model_and_render.msi_size:
msi_size = model_kwargs.pop('msi_size')
if len(cfg_train.pg_msi_scale):
msi_size = (msi_size[0] // (2**len(cfg_train.pg_msi_scale)), msi_size[1] // (2**len(cfg_train.pg_msi_scale)))
model_kwargs['msi_size'] = msi_size
# if cfg.data.ndc:
if cfg.fine_model_and_render.model_type == 'DirectMPIGO':
print(f'scene_rep_reconstruction ({stage}): \033[96muse multiplane images\033[0m')
model = dmpigo.DirectMPIGO(
xyz_min=xyz_min, xyz_max=xyz_max,
num_voxels=num_voxels,
**model_kwargs)
elif cfg.fine_model_and_render.model_type == 'DirectPanoramaVoxGO':
model = dpvgo.DirectPanoramaVoxGO(
xyz_min=xyz_min, xyz_max=xyz_max,
num_voxels=num_voxels,
**model_kwargs)
elif cfg.fine_model_and_render.model_type == 'DirectMSIGO':
model = dmsigo.DirectMSIGO(
xyz_min=xyz_min, xyz_max=xyz_max,
uv_min=uv_min, uv_max=uv_max,
num_voxels=num_voxels,
**model_kwargs)
else:
# print(f'scene_rep_reconstruction ({stage}): \033[96muse dense voxel grid\033[0m')
# model = dvgo.DirectVoxGO(
# xyz_min=xyz_min, xyz_max=xyz_max,
# num_voxels=num_voxels,
# mask_cache_path=coarse_ckpt_path,
# **model_kwargs)
raise NotImplementedError
model = model.to(device)
optimizer = utils.create_optimizer_or_freeze_model(model, cfg_train, global_step=0)
return model, optimizer
def load_existed_model(args, cfg, cfg_train, reload_ckpt_path):
if cfg.fine_model_and_render.model_type == 'DirectMPIGO':
model_class = dmpigo.DirectMPIGO
elif cfg.fine_model_and_render.model_type == 'DirectPanoramaVoxGO':
model_class = dpvgo.DirectPanoramaVoxGO
elif cfg.fine_model_and_render.model_type == 'DirectMSIGO':
model_class = dmsigo.DirectMSIGO
else:
# model_class = dvgo.DirectVoxGO
raise NotImplementedError
model = utils.load_model(model_class, reload_ckpt_path).to(device)
optimizer = utils.create_optimizer_or_freeze_model(model, cfg_train, global_step=0)
model, optimizer, start = utils.load_checkpoint(
model, optimizer, reload_ckpt_path, args.no_reload_optimizer)
return model, optimizer, start
def scene_rep_reconstruction(args, cfg, cfg_model, cfg_train, xyz_min, xyz_max, uv_min, uv_max, data_dict, stage, coarse_ckpt_path=None):
# init
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if abs(cfg_model.world_bound_scale - 1) > 1e-9:
xyz_shift = (xyz_max - xyz_min) * (cfg_model.world_bound_scale - 1) / 2
xyz_min -= xyz_shift
xyz_max += xyz_shift
HW, Ks, near, far, i_train, i_val, i_test, poses, render_poses, images, masks = [
data_dict[k] for k in [
'HW', 'Ks', 'near', 'far', 'i_train', 'i_val', 'i_test', 'poses', 'render_poses', 'images', 'masks'
]
]
# find whether there is existing checkpoint path
last_ckpt_path = os.path.join(cfg.basedir, cfg.expname, f'{stage}_last.tar')
if args.no_reload:
reload_ckpt_path = None
elif args.ft_path:
reload_ckpt_path = args.ft_path
elif os.path.isfile(last_ckpt_path):
reload_ckpt_path = last_ckpt_path
else:
reload_ckpt_path = None
# update image_size according to xyz_min and xyz_max
if len(cfg.fine_model_and_render.image_size) == 1:
H = cfg.fine_model_and_render.image_size[0]
ratio = ((xyz_max - xyz_min)[0] / (xyz_max - xyz_min)[1]).item() * HW[0][1] / HW[0][0]
W = int(round((H * ratio) / 64) * 64)
cfg.fine_model_and_render.image_size = (H, W)
print('update image_size to', cfg.fine_model_and_render.image_size)
if len(cfg.fine_model_and_render.msi_size) == 1:
H = cfg.fine_model_and_render.msi_size[0]
ratio = ((uv_max - uv_min)[0] / (uv_max - uv_min)[1]).item()
W = int(round((H * ratio) / 64) * 64)
cfg.fine_model_and_render.msi_size = (H, W)
print('update image_size to', cfg.fine_model_and_render.msi_size)
# init model and optimizer
if reload_ckpt_path is None:
print(f'scene_rep_reconstruction ({stage}): train from scratch')
model, optimizer = create_new_model(cfg, cfg_model, cfg_train, xyz_min, xyz_max, uv_min, uv_max, stage, coarse_ckpt_path)
start = 0
if cfg_model.maskout_near_cam_vox:
model.maskout_near_cam_vox(poses[i_train,:3,3], near)
else:
print(f'scene_rep_reconstruction ({stage}): reload from {reload_ckpt_path}')
model, optimizer, start = load_existed_model(args, cfg, cfg_train, reload_ckpt_path)
# init rendering setup
render_kwargs = {
'near': data_dict['near'],
'far': data_dict['far'],
'bg': 1 if cfg.data.white_bkgd else 0,
'rand_bkgd': cfg.data.rand_bkgd,
'stepsize': cfg_model.stepsize,
'inverse_y': cfg.data.inverse_y,
'flip_x': cfg.data.flip_x,
'flip_y': cfg.data.flip_y,
}
# init batch rays sampler
def gather_training_rays():
if data_dict['irregular_shape']:
rgb_tr_ori = [images[i].to('cpu' if cfg.data.load2gpu_on_the_fly else device) for i in i_train]
else:
rgb_tr_ori = images[i_train].to('cpu' if cfg.data.load2gpu_on_the_fly else device)
if masks is not None:
mask_tr_ori = masks[i_train].to('cpu' if cfg.data.load2gpu_on_the_fly else device)
else:
mask_tr_ori = [None for _ in i_train]
if cfg_train.ray_sampler == 'flatten':
rgb_tr, mask_tr, rays_o_tr, rays_d_tr, viewdirs_tr, imsz = dvgo.get_training_rays_flatten(
rgb_tr_ori=rgb_tr_ori,
mask_tr_ori=mask_tr_ori,
train_poses=poses[i_train],
HW=HW[i_train], Ks=Ks[i_train], ndc=cfg.data.ndc, inverse_y=cfg.data.inverse_y,
flip_x=cfg.data.flip_x, flip_y=cfg.data.flip_y)
elif cfg_train.ray_sampler == 'panorama_uniform':
mask_tr = None
rgb_tr, rays_o_tr, rays_d_tr, viewdirs_tr, imsz = dvgo.get_training_rays_panorama(
rgb_tr=rgb_tr_ori,
train_poses=poses[i_train],
HW=HW[i_train],
)
elif cfg_train.ray_sampler == 'random':
rgb_tr, mask_tr, rays_o_tr, rays_d_tr, viewdirs_tr, imsz = dvgo.get_training_rays(
rgb_tr=rgb_tr_ori,
mask_tr=mask_tr_ori,
train_poses=poses[i_train],
HW=HW[i_train], Ks=Ks[i_train], ndc=cfg.data.ndc, inverse_y=cfg.data.inverse_y,
flip_x=cfg.data.flip_x, flip_y=cfg.data.flip_y)
else:
raise NotImplementedError
return rgb_tr, mask_tr, rays_o_tr, rays_d_tr, viewdirs_tr, imsz
rgb_tr, mask_tr, rays_o_tr, rays_d_tr, viewdirs_tr, imsz = gather_training_rays()
index_generator = dvgo.batch_indices_generator(len(rgb_tr), cfg_train.N_rand)
batch_index_sampler = lambda: next(index_generator)
# view-count-based learning rate
if cfg_train.pervoxel_lr:
def per_voxel_init():
cnt = model.voxel_count_views(
rays_o_tr=rays_o_tr, rays_d_tr=rays_d_tr, imsz=imsz, near=near, far=far,
stepsize=cfg_model.stepsize, downrate=cfg_train.pervoxel_lr_downrate,
irregular_shape=data_dict['irregular_shape'])
optimizer.set_pervoxel_lr(cnt)
model.mask_cache.mask[cnt.squeeze() <= 2] = False
per_voxel_init()
if cfg_train.maskout_lt_nviews > 0:
model.update_occupancy_cache_lt_nviews(
rays_o_tr, rays_d_tr, imsz, render_kwargs, cfg_train.maskout_lt_nviews)
# GOGO
###############
images_dir = os.path.join(cfg.basedir, cfg.expname, 'images')
if not os.path.exists(images_dir):
os.mkdir(images_dir)
###############
torch.cuda.empty_cache()
psnr_lst = []
time0 = time.time()
global_step = -1
for global_step in trange(1+start, 1+cfg_train.N_iters):
# renew occupancy grid
if model.mask_cache is not None and (global_step + 500) % 1000 == 0:
model.update_occupancy_cache()
# progress scaling checkpoint
if global_step in cfg_train.pg_image_scale:
n_rest_image_scales = len(cfg_train.pg_image_scale)-cfg_train.pg_image_scale.index(global_step)-1
cur_image_size = (cfg_model.image_size[0] // (2**n_rest_image_scales), cfg_model.image_size[1] // (2**n_rest_image_scales))
upsample = global_step > cfg_train.pg_upsample_after
if isinstance(model, dmpigo.DirectMPIGO):
model.scale_image_grid(cur_image_size, upsample)
else:
raise NotImplementedError
if global_step in cfg_train.pg_equ_scale:
n_rest_equ_scales = len(cfg_train.pg_equ_scale)-cfg_train.pg_equ_scale.index(global_step)-1
cur_equ_size = (cfg_model.equ_size[0] // (2**n_rest_equ_scales), cfg_model.equ_size[1] // (2**n_rest_equ_scales))
upsample = global_step > cfg_train.pg_upsample_after
if isinstance(model, (dpvgo.DirectPanoramaVoxGO)):
model.scale_equ_grid(cur_equ_size, upsample)
else:
raise NotImplementedError
if global_step in cfg_train.pg_msi_scale:
n_rest_msi_scales = len(cfg_train.pg_msi_scale)-cfg_train.pg_msi_scale.index(global_step)-1
cur_msi_size = (cfg_model.msi_size[0] // (2**n_rest_msi_scales), cfg_model.msi_size[1] // (2**n_rest_msi_scales))
upsample = global_step > cfg_train.pg_upsample_after
if isinstance(model, (dmsigo.DirectMSIGO)):
model.scale_msi_grid(cur_msi_size, upsample)
else:
raise NotImplementedError
if global_step in cfg_train.pg_scale:
n_rest_scales = len(cfg_train.pg_scale)-cfg_train.pg_scale.index(global_step)-1
cur_voxels = int(cfg_model.num_voxels / (2**n_rest_scales))
if isinstance(model, (dpvgo.DirectPanoramaVoxGO, dmsigo.DirectMSIGO)):
model.scale_volume_grid(cur_voxels)
elif isinstance(model, dmpigo.DirectMPIGO):
model.scale_volume_grid(cur_voxels, model.mpi_depth)
else:
raise NotImplementedError
model.act_shift -= cfg_train.decay_after_scale
if global_step in cfg_train.pg_image_scale or global_step in cfg_train.pg_equ_scale or global_step in cfg_train.pg_scale or global_step in cfg_train.pg_msi_scale:
optimizer = utils.create_optimizer_or_freeze_model(model, cfg_train, global_step=0)
torch.cuda.empty_cache()
# random sample rays
if cfg_train.ray_sampler in ['flatten']:
sel_i = batch_index_sampler()
target = rgb_tr[sel_i]
rays_o = rays_o_tr[sel_i]
rays_d = rays_d_tr[sel_i]
viewdirs = viewdirs_tr[sel_i]
rays_mask = mask_tr[sel_i] if mask_tr is not None else None
elif cfg_train.ray_sampler == 'random' or cfg_train.ray_sampler == 'panorama_uniform':
sel_b = torch.randint(rgb_tr.shape[0], [cfg_train.N_rand])
sel_r = torch.randint(rgb_tr.shape[1], [cfg_train.N_rand])
sel_c = torch.randint(rgb_tr.shape[2], [cfg_train.N_rand])
target = rgb_tr[sel_b, sel_r, sel_c]
rays_o = rays_o_tr[sel_b, sel_r, sel_c]
rays_d = rays_d_tr[sel_b, sel_r, sel_c]
viewdirs = viewdirs_tr[sel_b, sel_r, sel_c]
rays_mask = mask_tr[sel_b, sel_r, sel_c] if mask_tr is not None else None
else:
raise NotImplementedError
if cfg.data.load2gpu_on_the_fly:
target = target.to(device)
rays_o = rays_o.to(device)
rays_d = rays_d.to(device)
viewdirs = viewdirs.to(device)
if rays_mask is not None:
rays_mask = rays_mask.to(device)
# volume rendering
render_result = model(
rays_o, rays_d, viewdirs, rays_mask,
global_step=global_step, is_train=True,
**render_kwargs)
# gradient descent step
optimizer.zero_grad(set_to_none=True)
loss = cfg_train.weight_main * F.mse_loss(render_result['rgb_marched'], target)
psnr = utils.mse2psnr(loss.detach())
if cfg_train.weight_entropy_last > 0:
pout = render_result['alphainv_last'].clamp(1e-6, 1-1e-6)
entropy_last_loss = -(pout*torch.log(pout) + (1-pout)*torch.log(1-pout)).mean()
loss += cfg_train.weight_entropy_last * entropy_last_loss
if cfg_train.weight_nearclip > 0:
near_thres = data_dict['near_clip'] / model.scene_radius[0].item()
near_mask = (render_result['t'] < near_thres)
density = render_result['raw_density'][near_mask]
if len(density):
nearclip_loss = (density - density.detach()).sum()
loss += cfg_train.weight_nearclip * nearclip_loss
if cfg_train.weight_distortion > 0:
n_max = render_result['n_max']
s = render_result['s']
w = render_result['weights']
ray_id = render_result['ray_id']
loss_distortion = flatten_eff_distloss(w, s, 1/n_max, ray_id)
loss += cfg_train.weight_distortion * loss_distortion
if cfg_train.weight_rgbper > 0:
rgbper = (render_result['raw_rgb'] - target[render_result['ray_id']]).pow(2).sum(-1)
rgbper_loss = (rgbper * render_result['weights'].detach()).sum() / len(rays_o)
loss += cfg_train.weight_rgbper * rgbper_loss
if cfg_train.weight_dudv > 0 and render_result.get('dudv', None) is not None:
dudv_loss = (render_result['dudv']).pow(2).sum() / len(rays_o)
loss += cfg_train.weight_dudv * dudv_loss
loss.backward()
if global_step<cfg_train.tv_before and global_step>cfg_train.tv_after and global_step%cfg_train.tv_every==0:
if cfg_train.weight_tv_density>0:
model.density_total_variation_add_grad(
cfg_train.weight_tv_density/len(rays_o), global_step<cfg_train.tv_dense_before)
if cfg_train.weight_tv_k0>0:
model.k0_total_variation_add_grad(
cfg_train.weight_tv_k0/len(rays_o), global_step<cfg_train.tv_dense_before)
optimizer.step()
psnr_lst.append(psnr.item())
# update lr
decay_steps = cfg_train.lrate_decay * 1000
decay_factor = 0.1 ** (1/decay_steps)
for i_opt_g, param_group in enumerate(optimizer.param_groups):
param_group['lr'] = param_group['lr'] * decay_factor
# check log & save
if global_step%args.i_print==0:
eps_time = time.time() - time0
eps_time_str = f'{eps_time//3600:02.0f}:{eps_time//60%60:02.0f}:{eps_time%60:02.0f}'
tqdm.write(f'scene_rep_reconstruction ({stage}): iter {global_step:6d} / '
f'Loss: {loss.item():.9f} / PSNR: {np.mean(psnr_lst):5.2f} / '
f'Eps: {eps_time_str}')
psnr_lst = []
###############
if cfg.fine_model_and_render.image_size:
if hasattr(model, 'k0'):
Image.fromarray(model.get_k0_grid_rgb()).resize(cfg.fine_model_and_render.image_size[::-1]).save(os.path.join(images_dir, 'k0_{:05d}.png'.format(global_step)))
if cfg.fine_model_and_render.equ_size:
if hasattr(model, 'k0'):
Image.fromarray(model.get_k0_grid_rgb()).resize(cfg.fine_model_and_render.equ_size[::-1]).save(os.path.join(images_dir, 'k0_{:05d}.png'.format(global_step)))
if cfg.fine_model_and_render.msi_size:
if hasattr(model, 'k0'):
Image.fromarray(model.get_k0_grid_rgb()).resize(cfg.fine_model_and_render.msi_size[::-1]).save(os.path.join(images_dir, 'k0_{:05d}.png'.format(global_step)))
###############
if global_step%args.i_weights==0:
path = os.path.join(cfg.basedir, cfg.expname, f'{stage}_{global_step:06d}.tar')
torch.save({
'global_step': global_step,
'model_kwargs': model.get_kwargs(),
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, path)
print(f'scene_rep_reconstruction ({stage}): saved checkpoints at', path)
if global_step != -1:
torch.save({
'global_step': global_step,
'model_kwargs': model.get_kwargs(),
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, last_ckpt_path)
print(f'scene_rep_reconstruction ({stage}): saved checkpoints at', last_ckpt_path)
def train(args, cfg, data_dict):
# init
print('train: start')
eps_time = time.time()
savedir = os.path.join(cfg.basedir, cfg.expname)
if not os.path.exists(savedir):
os.makedirs(savedir)
elif args.no_reload:
current_time = datetime.now()
formatted_time = current_time.strftime('%Y-%m-%d-%H-%M')
os.rename(savedir, f'{savedir}-{formatted_time}')
os.makedirs(savedir)
else:
return
with open(os.path.join(cfg.basedir, cfg.expname, 'args.txt'), 'w') as file:
for arg in sorted(vars(args)):
attr = getattr(args, arg)
file.write('{} = {}\n'.format(arg, attr))
cfg.dump(os.path.join(cfg.basedir, cfg.expname, 'config.py'))
# coarse geometry searching (only works for inward bounded scenes)
eps_coarse = time.time()
if data_dict['xyz_min'] is not None and data_dict['xyz_max'] is not None:
xyz_min_coarse = torch.Tensor(data_dict['xyz_min'])
xyz_max_coarse = torch.Tensor(data_dict['xyz_max'])
elif 'xyz_min' in cfg.data and 'xyz_max' in cfg.data:
xyz_min_coarse = torch.tensor(cfg.data.xyz_min)
xyz_max_coarse = torch.tensor(cfg.data.xyz_max)
else:
xyz_min_coarse, xyz_max_coarse = compute_bbox_by_cam_frustrm(args=args, cfg=cfg, **data_dict)
utils.plot_camera_poses(savedir, data_dict['poses'].detach().cpu().numpy(), xyz_min_coarse.detach().cpu().numpy(), xyz_max_coarse.detach().cpu().numpy())
if 'uv_min' in cfg.data and 'uv_max' in cfg.data:
uv_min_coarse, uv_max_coarse = torch.Tensor(cfg.data.uv_min), torch.Tensor(cfg.data.uv_max)
else:
uv_min_coarse, uv_max_coarse = None, None
if cfg.coarse_train.N_iters > 0:
scene_rep_reconstruction(
args=args, cfg=cfg,
cfg_model=cfg.coarse_model_and_render, cfg_train=cfg.coarse_train,
xyz_min=xyz_min_coarse, xyz_max=xyz_max_coarse,
uv_min=uv_min_coarse, uv_max=uv_max_coarse,
data_dict=data_dict, stage='coarse')
eps_coarse = time.time() - eps_coarse
eps_time_str = f'{eps_coarse//3600:02.0f}:{eps_coarse//60%60:02.0f}:{eps_coarse%60:02.0f}'
print('train: coarse geometry searching in', eps_time_str)
coarse_ckpt_path = os.path.join(cfg.basedir, cfg.expname, f'coarse_last.tar')
else:
print('train: skip coarse geometry searching')
coarse_ckpt_path = None
# fine detail reconstruction
eps_fine = time.time()
if cfg.coarse_train.N_iters == 0:
xyz_min_fine, xyz_max_fine = xyz_min_coarse.clone(), xyz_max_coarse.clone()
if 'uv_min' in cfg.data and 'uv_max' in cfg.data:
uv_min_fine, uv_max_fine = uv_min_coarse.clone(), uv_max_coarse.clone()
else:
uv_min_fine, uv_max_fine = None, None
else:
raise NotImplementedError
scene_rep_reconstruction(
args=args, cfg=cfg,
cfg_model=cfg.fine_model_and_render, cfg_train=cfg.fine_train,
xyz_min=xyz_min_fine, xyz_max=xyz_max_fine,
uv_min=uv_min_fine, uv_max=uv_max_fine,
data_dict=data_dict, stage='fine',
coarse_ckpt_path=coarse_ckpt_path)
eps_fine = time.time() - eps_fine
eps_time_str = f'{eps_fine//3600:02.0f}:{eps_fine//60%60:02.0f}:{eps_fine%60:02.0f}'
print('train: fine detail reconstruction in', eps_time_str)
eps_time = time.time() - eps_time
eps_time_str = f'{eps_time//3600:02.0f}:{eps_time//60%60:02.0f}:{eps_time%60:02.0f}'
print('train: finish (eps time', eps_time_str, ')')
if __name__=='__main__':
# load setup
parser = config_parser()
args = parser.parse_args()
cfg = mmcv.Config.fromfile(args.config)
# init enviroment
if torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
device = torch.device('cuda')
else:
device = torch.device('cpu')
seed_everything()
# load images / poses / camera settings / data split
data_dict = load_everything(args=args, cfg=cfg)
# train
if not args.render_only:
train(args, cfg, data_dict)
# load model for rendring
if args.render_test or args.render_train or args.render_video or args.render_image or args.render_depth:
if args.ft_path:
ckpt_path = args.ft_path
else:
ckpt_path = os.path.join(cfg.basedir, cfg.expname, 'fine_last.tar')
ckpt_name = ckpt_path.split('/')[-1][:-4]
if cfg.fine_model_and_render.model_type == 'DirectMPIGO':
model_class = dmpigo.DirectMPIGO
elif cfg.fine_model_and_render.model_type == 'DirectPanoramaVoxGO':
model_class = dpvgo.DirectPanoramaVoxGO
elif cfg.fine_model_and_render.model_type == 'DirectMSIGO':
model_class = dmsigo.DirectMSIGO
else:
# model_class = dvgo.DirectVoxGO
raise NotImplementedError
model = utils.load_model(model_class, ckpt_path).to(device)
# save k images
try:
Image.fromarray(model.get_k0_grid_rgb()).save(os.path.join(cfg.basedir, cfg.expname, 'k0.png'))
print('k0.png is saved.')
except:
print('k0.png is not saved.')
###############
edit = args.edit
if edit != '':
model.k0.load(os.path.join(cfg.basedir, cfg.expname, 'k0_{:s}.png'.format(edit)))
###############
stepsize = cfg.fine_model_and_render.stepsize
render_viewpoints_kwargs = {
'model': model,
'ndc': cfg.data.ndc,
'render_kwargs': {
'near': data_dict['near'],
'far': data_dict['far'],
'bg': 1 if cfg.data.white_bkgd else 0,
'stepsize': stepsize,
'inverse_y': cfg.data.inverse_y,
'flip_x': cfg.data.flip_x,
'flip_y': cfg.data.flip_y,
'render_depth': True,
},
}
# render trainset and eval
if args.render_train:
testsavedir = os.path.join(cfg.basedir, cfg.expname, f'render_train_{ckpt_name}')
if edit:
testsavedir += '_{:s}'.format(edit)
os.makedirs(testsavedir, exist_ok=True)
print('All results are dumped into', testsavedir)
rgbs, depths, bgmaps = render_viewpoints(
render_poses=data_dict['poses'][data_dict['i_train']],
HW=data_dict['HW'][data_dict['i_train']],
Ks=data_dict['Ks'][data_dict['i_train']],
gt_imgs=[data_dict['images'][i].cpu().numpy() for i in data_dict['i_train']],
savedir=testsavedir, dump_images=args.dump_images,
eval_ssim=args.eval_ssim, render_panorama=cfg.data.panorama,
log_metrics=True if edit == '' else False,
**render_viewpoints_kwargs)
imageio.mimwrite(os.path.join(testsavedir, 'video.rgb.mp4'), utils.to8b(rgbs), fps=30, quality=8)
imageio.mimwrite(os.path.join(testsavedir, 'video.depth.mp4'), utils.to8b(1 - depths / np.max(depths)), fps=30, quality=8)
# render testset and eval
if args.render_test:
testsavedir = os.path.join(cfg.basedir, cfg.expname, f'render_test_{ckpt_name}')
if edit:
testsavedir += '_{:s}'.format(edit)
os.makedirs(testsavedir, exist_ok=True)
print('All results are dumped into', testsavedir)
rgbs, depths, bgmaps = render_viewpoints(
render_poses=data_dict['poses'][data_dict['i_test']],
HW=data_dict['HW'][data_dict['i_test']],
Ks=data_dict['Ks'][data_dict['i_test']],
gt_imgs=[data_dict['images'][i].cpu().numpy() for i in data_dict['i_test']],
savedir=testsavedir, dump_images=args.dump_images,
eval_ssim=args.eval_ssim, render_panorama=cfg.data.panorama,
log_metrics=True if edit == '' else False,
**render_viewpoints_kwargs)
imageio.mimwrite(os.path.join(testsavedir, 'video.rgb.mp4'), utils.to8b(rgbs), fps=30, quality=8)
imageio.mimwrite(os.path.join(testsavedir, 'video.depth.mp4'), utils.to8b(1 - depths / np.max(depths)), fps=30, quality=8)
# render video
if args.render_video:
testsavedir = os.path.join(cfg.basedir, cfg.expname, f'render_video_{ckpt_name}')
if edit:
testsavedir += '_{:s}'.format(edit)
os.makedirs(testsavedir, exist_ok=True)
print('All results are dumped into', testsavedir)
if args.render_panorama:
HW = data_dict['HW'][data_dict['i_test']][[0]].repeat(len(data_dict['render_poses']), 0)
else:
HW = np.array([data_dict['hwf'][:2]]).repeat(len(data_dict['render_poses']), 0)
rgbs, depths, bgmaps = render_viewpoints(
render_poses=data_dict['render_poses'],
HW=HW,
Ks=data_dict['Ks_render'],
render_factor=args.render_video_factor,
render_video_flipy=args.render_video_flipy,
render_video_rot90=args.render_video_rot90,
savedir=testsavedir, dump_images=args.dump_images,
render_panorama=args.render_panorama,
**render_viewpoints_kwargs)
imageio.mimwrite(os.path.join(testsavedir, 'video.rgb.mp4'), utils.to8b(rgbs), fps=30, quality=8)
depths_vis = depths * (1-bgmaps) + bgmaps
dmin, dmax = np.percentile(depths_vis[bgmaps < 0.1], q=[5, 95])
depth_vis = plt.get_cmap('rainbow')(1 - np.clip((depths_vis - dmin) / (dmax - dmin), 0, 1)).squeeze()[..., :3]
imageio.mimwrite(os.path.join(testsavedir, 'video.depth.mp4'), utils.to8b(depth_vis), fps=30, quality=8)
if args.render_image:
testsavedir = os.path.join(cfg.basedir, cfg.expname, f'render_image_{ckpt_name}')
if edit:
testsavedir += '_{:s}'.format(edit)
os.makedirs(testsavedir, exist_ok=True)
print('All results are dumped into', testsavedir)
if args.render_panorama:
HW = np.array(data_dict['HW'])[:1]
else:
HW = np.array([data_dict['hwf'][:2]])
render_poses = data_dict['poses'][data_dict['i_train']][[0]]
rgbs, depths, bgmaps = render_viewpoints(
render_poses=render_poses,
HW=HW,
Ks=data_dict['Ks'][data_dict['i_test']][[0]],
render_factor=args.render_video_factor,
render_video_flipy=args.render_video_flipy,
render_video_rot90=args.render_video_rot90,
savedir=testsavedir, dump_images=True,
render_panorama=args.render_panorama,
**render_viewpoints_kwargs)
np.save(os.path.join(testsavedir, 'depth.npy'), depths[0, ..., 0])
depths_vis = depths * (1-bgmaps) + bgmaps
dmin, dmax = np.percentile(depths_vis[bgmaps < 0.1], q=[5, 95])
depth_vis = plt.get_cmap('rainbow')(1 - np.clip((depths_vis - dmin) / (dmax - dmin), 0, 1)).squeeze()[..., :3]
Image.fromarray((depth_vis * 255.).astype(np.uint8)).save(os.path.join(testsavedir, 'depth.png'))
if args.render_depth:
testsavedir = os.path.join(cfg.basedir, cfg.expname, f'render_depth_{ckpt_name}')
os.makedirs(testsavedir, exist_ok=True)
print('All results are dumped into', testsavedir)
rgbs, depths, bgmaps = render_viewpoints(
render_poses=data_dict['poses'][data_dict['i_train']],
HW=data_dict['HW'][data_dict['i_train']],
Ks=data_dict['Ks'][data_dict['i_train']],
render_factor=args.render_video_factor,
render_video_flipy=args.render_video_flipy,
render_video_rot90=args.render_video_rot90,
savedir=testsavedir, dump_images=False,
render_panorama=args.render_panorama, dump_depths=True,
**render_viewpoints_kwargs)
# imageio.mimwrite(os.path.join(testsavedir, 'video.rgb.mp4'), utils.to8b(rgbs), fps=30, quality=8)
depths_vis = depths * (1-bgmaps) + bgmaps
dmin, dmax = np.percentile(depths_vis[bgmaps < 0.1], q=[5, 95])
depth_vis = plt.get_cmap('rainbow')(1 - np.clip((depths_vis - dmin) / (dmax - dmin), 0, 1)).squeeze()[..., :3]
imageio.mimwrite(os.path.join(testsavedir, 'video.depth.mp4'), utils.to8b(depth_vis), fps=30, quality=8)
print('Done')