-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcycloidal.py
53 lines (47 loc) · 1.64 KB
/
cycloidal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#based on a work by genehacker
#copyright 2009 ben lipkowitz
#distributed under the terms of the GNU GPL version 2 or later
#
#cycloidal.py: draws a cycloidal gear
import cairo
from math import *
def frange(start, stop, step): #this ought to come with python :(
r = start
while r < stop:
yield r
r += step
height, width = 500, 500
surf = cairo.SVGSurface('cycloidal.svg', height, width)
cr = cairo.Context(surf)
cr.translate(0.5, 0.5) #align pixels
cr.scale(width, height)
cr.translate(0.5, 0.5) #move gear to center of image
tmp = cr.user_to_device(1,1)
scale = (tmp[0] + tmp[1]) / 2.
cr.set_line_width(1/scale)
def cycloidal(teeth=17, module=0.05, resolution=2):
'''draws a cycloidal gear. arguments: number of teeth, circumference per tooth, degrees per step'''
radius = module*teeth/2 #pitch radius
z = teeth*2
ro = radius/z #rolling circle radius
inout = 1
angle = 2*pi/z #angle of 1 lobe of hypo/epicycloid
for m in range(z+1): #teeth):
#for inout in [1, -1]:
inout *= -1
for theta in frange(angle*m, angle*(m+1), resolution*pi/180):
x = ((radius + inout * ro) * cos(theta)) - inout * \
(ro * cos(theta * (radius + inout * ro)/ro))
y = ((radius + inout * ro) * sin(theta)) - \
(ro * sin(theta * (radius + inout * ro)/ro))
if m == 0:
cr.move_to(x, y)
else:
cr.line_to(x,y)
cr.set_source_rgb(1,1,1)
cr.fill_preserve()
cr.set_source_rgb(0,0,0)
cr.stroke()
cycloidal(10)
cycloidal(8)
surf.write_to_png('cycloidal.png')