-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmobilenet.py
148 lines (118 loc) · 4.9 KB
/
mobilenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn as nn
from .ops import blocks
from .utils import export, config, load_from_local_or_url
from typing import Any, OrderedDict, Type, Union, List
class MobileBlock(nn.Sequential):
def __init__(
self,
inp,
oup,
kernel_size: int = 3,
stride: int = 1,
padding: int = None,
dilation: int = 1,
groups: int = 1
):
super().__init__(
blocks.DepthwiseBlock(inp, inp, kernel_size, stride, padding, dilation=dilation),
blocks.PointwiseBlock(inp, oup, groups=groups)
)
class DepthwiseSeparableBlock(nn.Sequential):
def __init__(
self,
inp,
oup,
kernel_size: int = 3,
stride: int = 1,
padding: int = None,
dilation: int = 1,
groups: int = 1
):
super().__init__(
blocks.DepthwiseConv2d(inp, inp, kernel_size, stride, padding, dilation=dilation),
blocks.PointwiseBlock(inp, oup, groups=groups)
)
@export
class MobileNet(nn.Module):
'''https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py'''
def __init__(
self,
in_channels: int = 3,
num_classes: int = 1000,
base_width: int = 32,
block: Type[Union[MobileBlock, DepthwiseSeparableBlock]] = MobileBlock,
depth_multiplier: float = 1.0,
dropout_rate: float = 0.2,
dilations: List[int] = None,
thumbnail: bool = False,
**kwargs: Any
):
super().__init__()
def depth(d): return max(int(d * depth_multiplier), 8)
dilations = dilations or [1, 1, 1, 1]
assert len(dilations) == 4, ''
FRONT_S = 1 if thumbnail else 2
layers = [2, 2, 6, 2]
strides = [FRONT_S, 2, 2, 2]
self.features = nn.Sequential(OrderedDict([
('stem', blocks.Stage(
blocks.Conv2dBlock(in_channels, depth(base_width), stride=FRONT_S),
block(depth(base_width), depth(base_width) * 2)
))
]))
for stage, stride in enumerate(strides):
inp = depth(base_width * 2 ** (stage + 1))
oup = depth(base_width * 2 ** (stage + 2))
self.features.add_module(f'stage{stage+1}', blocks.Stage(
[block(
inp if i == 0 else oup,
oup,
stride=stride if (i == 0 and dilations[stage] == 1) else 1,
dilation=max(dilations[stage] // (stride if i == 0 else 1), 1)
) for i in range(layers[stage])]
))
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Dropout(dropout_rate, inplace=True),
nn.Linear(oup, num_classes)
)
def forward(self, x):
x = self.features(x)
x = self.pool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def _mobilenet_v1(
depth_multiplier: float = 1.0,
block: Type[Union[MobileBlock, DepthwiseSeparableBlock]] = MobileBlock,
pretrained: bool = False,
pth: str = None,
progress: bool = True,
**kwargs: Any
):
model = MobileNet(depth_multiplier=depth_multiplier, block=block, **kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model
@export
@config(url='https://github.com/ffiirree/cv-models/releases/download/v0.0.1/mobilenet_v1_x1_0-e00006ef.pth')
def mobilenet_v1_x1_0(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
return _mobilenet_v1(1.0, MobileBlock, pretrained, pth, progress, **kwargs)
@export
@config(url='https://github.com/ffiirree/cv-models/releases/download/v0.0.1/mobilenet_v1_x0_75-43c1cb04.pth')
def mobilenet_v1_x0_75(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
return _mobilenet_v1(0.75, MobileBlock, pretrained, pth, progress, **kwargs)
@export
@config(url='https://github.com/ffiirree/cv-models/releases/download/v0.0.1/mobilenet_v1_x0_5-588ee141.pth')
def mobilenet_v1_x0_5(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
return _mobilenet_v1(0.5, MobileBlock, pretrained, pth, progress, **kwargs)
@export
@config(url='https://github.com/ffiirree/cv-models/releases/download/v0.0.1/mobilenet_v1_x0_35-cbab38a6.pth')
def mobilenet_v1_x0_35(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
return _mobilenet_v1(0.35, MobileBlock, pretrained, pth, progress, **kwargs)
@export
@config(url='https://github.com/ffiirree/cv-models/releases/download/v0.0.1/mobilenet_v1_x1_0_wo_dwrelubn-2956d795.pth')
@blocks.normalizer(position='after')
def mobilenet_v1_x1_0_wo_dwrelubn(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs):
return _mobilenet_v1(1.0, DepthwiseSeparableBlock, pretrained, pth, progress, **kwargs)