-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathflops.py
executable file
·44 lines (35 loc) · 1.45 KB
/
flops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import json
import argparse
import torch
from cvm.utils import list_models, create_model
from fvcore.nn import FlopCountAnalysis, flop_count_str, flop_count_table
def print_model(model, str: bool = False, max_depth: int = 3):
model.eval()
flops = FlopCountAnalysis(model, input)
print(flop_count_str(flops) if str else flop_count_table(flops, max_depth=max_depth))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--model', '-m', type=str)
parser.add_argument('--str', action='store_true')
parser.add_argument('--list-models', type=str, default=None)
parser.add_argument('--in-channels', type=int, default=3)
parser.add_argument('--num-classes', type=int, default=1000)
parser.add_argument('--image-size', type=int, default=224)
parser.add_argument('--max-depth', type=int, default=3)
args = parser.parse_args()
input = torch.randn(1, args.in_channels, args.image_size, args.image_size)
thumbnail = True if args.image_size < 100 else False
if args.list_models:
print(json.dumps(list_models(args.list_models), indent=4))
else:
print_model(
create_model(
args.model,
thumbnail=thumbnail,
in_channels=args.in_channels,
num_classes=args.num_classes,
cuda=False,
),
args.str,
args.max_depth
)