-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeletion_batch_v4_gpu1.py
385 lines (309 loc) · 12.7 KB
/
deletion_batch_v4_gpu1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import argparse
import os
import random
import shutil
import time
import sys
import warnings
from srblib import abs_path
from PIL import ImageFilter, Image
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm, trange
import skimage
# Fixing for deterministic results
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# bibliotecas inpainter
sys.path.insert(0, './generativeimptorch')
from utils.tools import get_config, get_model_list
from model.networks import Generator
imagenet_val_xml_path = './val_bb'
imagenet_val_path = './val/'
base_img_dir = abs_path(imagenet_val_path)
input_dir_path = 'images_list.txt'
text_file = abs_path(input_dir_path)
imagenet_class_mappings = './imagenet_class_mappings'
torch.manual_seed(0)
learning_rate = 0.1 * 0.8 # orig (0.3) 0.1 (preservation sparser) 0.3 (preservation dense)
max_iterations = 228 # 130 *2
l1_coeff = 0.01e-5 * 2 # *2 *4 *0.5 (robusto)
size = 224
tv_beta = 3
tv_coeff = 1e-2
factorTV = 1 * 0.5 * 0.005 # 1(dense) o 0.5 (sparser/sharp) #0.5 (preservation)
def inpainter(img, mask):
config = get_config('./generativeimptorch/configs/config.yaml')
checkpoint_path = os.path.join('./generativeimptorch/checkpoints',
config['dataset_name'],
config['mask_type'] + '_' + config['expname'])
cuda = config['cuda']
device_ids = config['gpu_ids']
with torch.no_grad(): # enter no grad context
# Test a single masked image with a given mask
x = img
# denormaliza imagenet y se normaliza a inpainter [-1,1] mean=0.5, std=0.5
x = transforms.Normalize(mean=[0.015 / 0.229, 0.044 / 0.224, 0.094 / 0.225],
std=[0.5 / 0.229, 0.5 / 0.224, 0.5 / 0.225])(x)
x = x * (mask)
# Define the trainer
netG = Generator(config['netG'], cuda, device_ids)
# Resume weight
last_model_name = get_model_list(checkpoint_path, "gen", iteration=0)
netG.load_state_dict(torch.load(last_model_name))
# netG = torch.nn.parallel.DataParallel(netG, device_ids=[0, 1])
netG.cuda()
# Inference
x1, x2, offset_flow = netG(x, (1. - mask))
return x2
def tv_norm(input, tv_beta):
img = input[:, 0, :]
row_grad = torch.abs((img[:, :-1, :] - img[:, 1:, :])).pow(tv_beta).sum(dim=(1, 2))
col_grad = torch.abs((img[:, :, :-1] - img[:, :, 1:])).pow(tv_beta).sum(dim=(1, 2))
return row_grad + col_grad
torch.cuda.set_device(1) # especificar cual gpu 0 o 1
# model = models.googlenet(pretrained=True)
# model = models.resnet50(pretrained=True)
# model = models.vgg16(pretrained=True)
model = models.alexnet(pretrained=True)
model.cuda()
model.eval()
print('GPU 1 explicacion ver 4')
img_name_list = []
with open(text_file, 'r') as f:
for line in f:
img_name_list.append(line.split('\n')[0])
def imagenet_label_mappings():
fileName = os.path.join(imagenet_class_mappings, 'imagenet_label_mapping')
with open(fileName, 'r') as f:
image_label_mapping = {int(x.split(":")[0]): x.split(":")[1].strip()
for x in f.readlines() if len(x.strip()) > 0}
return image_label_mapping
im_label_map = imagenet_label_mappings()
class DataProcessing:
def __init__(self, data_path, transform, img_idxs=[0, 1], if_noise=0, noise_var=0.0):
self.data_path = data_path
self.transform = transform
self.if_noise = if_noise
self.noise_mean = 0
self.noise_var = noise_var
img_list = img_name_list[img_idxs[0]:img_idxs[1]]
self.img_filenames = [os.path.join(data_path, f'{i}.JPEG') for i in img_list]
# self.img_filenames.sort()
def __getitem__(self, index):
img = Image.open(os.path.join(self.data_path, self.img_filenames[index])).convert('RGB')
target = self.get_image_class(os.path.join(self.data_path, self.img_filenames[index]))
if self.if_noise == 1:
img = skimage.util.random_noise(np.asarray(img), mode='gaussian',
mean=self.noise_mean, var=self.noise_var,
) # numpy, dtype=float64,range (0, 1)
img = Image.fromarray(np.uint8(img * 255))
img = self.transform(img)
return img, target, os.path.join(self.data_path, self.img_filenames[index])
# return img, target
def __len__(self):
return len(self.img_filenames)
def get_image_class(self, filepath):
# ImageNet 2012 validation set images?
with open(os.path.join(imagenet_class_mappings, "ground_truth_val2012")) as f:
ground_truth_val2012 = {x.split()[0]: int(x.split()[1])
for x in f.readlines() if len(x.strip()) > 0}
def get_class(f):
ret = ground_truth_val2012.get(f, None)
return ret
image_class = get_class(filepath.split('/')[-1])
return image_class
transform_val = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# Plots image from tensor
def tensor_imshow(inp, title=None, **kwargs):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
# Mean and std for ImageNet
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp, **kwargs)
if title is not None:
plt.title(title)
plt.show()
# list_of_layers = ['conv1',
# 'conv2',
# 'conv3',
# 'inception3a',
# 'inception3b',
# 'inception4a',
# 'inception4b',
# 'inception4c',
# 'inception4d',
# 'inception4e',
# 'inception5a',
# 'inception5b',
# 'fc'
# ]
# capas para resnet50
# list_of_layers = ['relu',
# 'layer1.0',
# 'layer1.1',
# 'layer1.2',
# 'layer2.0',
# 'layer2.1',
# 'layer2.2',
# 'layer2.3',
# 'layer3.0',
# 'layer3.1',
# 'layer3.2',
# 'layer3.3',
# 'layer3.4',
# 'layer3.5',
# 'layer4.0',
# 'layer4.1',
# 'layer4.2',
# ]
# capas para vgg16
# list_of_layers = ['features.1',
# 'features.3',
# 'features.6',
# 'features.8',
# 'features.11',
# 'features.13',
# 'features.15',
# 'features.18',
# 'features.20',
# 'features.22',
# 'features.25',
# 'features.27',
# 'features.29'
# ]
# capas para alexnet
list_of_layers = ['features.1',
'features.4',
'features.7',
'features.9',
'features.11',
'classifier.2',
'classifier.5'
]
activation_orig = {}
def get_activation_orig(name):
def hook(model, input, output):
activation_orig[name] = output
return hook
def get_activation_mask(name):
def hook(model, input, output):
act_mask = output
# print(act_mask.shape). #debug
# print(activation_orig[name].shape) #debug
limite_sup = (act_mask <= torch.fmax(torch.tensor(0), activation_orig[name]))
limite_inf = (act_mask >= torch.fmin(torch.tensor(0), activation_orig[name]))
oper = limite_sup * limite_inf
# print('oper shape=',oper.shape). #debug
act_mask.requires_grad_(True)
act_mask.retain_grad()
h = act_mask.register_hook(lambda grad: grad * oper)
# x.register_hook(update_gradients(2))
# activation[name]=act_mask
# h.remove()
return hook
def my_explanation(img_batch, max_iterations, gt_category):
F_hook = []
exp_hook = []
for module_name, module in model.named_modules():
if module_name in list_of_layers:
F_hook.append(module.register_forward_hook(get_activation_orig(module_name)))
# for name, layer in model.named_children():
# if name in list_of_layers:
# F_hook.append(layer.register_forward_hook(get_activation_orig(name)))
# se calculan las activaciones para el batch de imágenes y se almacenan en la lista activation_orig
# la funcion "feed forward" registra los hook
org_softmax = torch.nn.Softmax(dim=1)(model(img_batch))
# se borran los hook registrados en Feed Forward
for fh in F_hook:
fh.remove()
for module_name, module in model.named_modules():
if module_name in list_of_layers:
exp_hook.append(module.register_forward_hook(get_activation_mask(module_name)))
# for name, layer in model.named_children():
# if name in list_of_layers:
# exp_hook.append(layer.register_forward_hook(get_activation_mask(name)))
for param in model.parameters():
param.requires_grad = False
np.random.seed(seed=0)
mask = torch.from_numpy(np.float32(np.random.uniform(0, 0.01, size=(1, 1, 224, 224))))
mask = mask.expand(img_batch.size(0), 1, 224, 224)
mask = mask.cuda()
mask.requires_grad = True
# null_img = torch.zeros(img_batch.size(0), 3, 224, 224).cuda()
# null_img_blur = transforms.GaussianBlur(kernel_size=223, sigma=10)(img_batch)
# null_img_blur.requires_grad = False
# null_img = null_img_blur.cuda()
optimizer = torch.optim.Adam([mask], lr=learning_rate)
for i in trange(max_iterations):
extended_mask = mask.expand(img_batch.size(0), 3, 224, 224)
img_inpainted = inpainter(img_batch, mask)
img_inpainted = transforms.Normalize(mean=-1, std=2)(img_inpainted)
img_inpainted = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])(img_inpainted)
perturbated_input = img_batch.mul(extended_mask) + img_inpainted.mul(1 - extended_mask)
# perturbated_input = perturbated_input.to(torch.float32)
optimizer.zero_grad()
outputs = torch.nn.Softmax(dim=1)(model(perturbated_input)) # (3,1000)
preds = outputs[torch.arange(0, img_batch.size(0)).tolist(), gt_category.tolist()]
loss = l1_coeff * torch.sum(torch.abs(1 - mask), dim=(1, 2, 3)) + preds + \
factorTV * tv_coeff * tv_norm(mask, tv_beta)
loss.backward(gradient=torch.ones_like(loss).cuda())
optimizer.step()
mask.data.clamp_(0, 1)
for eh in exp_hook:
eh.remove()
# Para visualizar las máscaras
# mask_np = (mask.cpu().detach().numpy())
#
# for i in range(mask_np.shape[0]):
# plt.imshow(1 - mask_np[i, 0, :, :])
# plt.show()
return mask
batch_size = 25
# batch_size = 1
val_dataset = DataProcessing(base_img_dir, transform_val, img_idxs=[100, 200], if_noise=1, noise_var=0.1)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=10,
pin_memory=True)
init_time = time.time()
iterator = tqdm(enumerate(val_loader), total=len(val_loader), desc='batch')
# save_path = './resnet50_v4'
# save_path = './resnet50_v4_tv'
# save_path = './resnet50_v4_tv_0.05'
# save_path = './resnet50_v4_tv_0.1'
# save_path = './vgg16_v4'
# save_path = './vgg16_v4_tv'
# save_path = './vgg16_v4_tv_0.05'
# save_path = './vgg16_v4_tv_0.1'
# save_path = './alexnet_v4'
# save_path = './alexnet_v4_tv'
# save_path = './alexnet_v4_tv_0.05'
save_path = './alexnet_v4_tv_0.1'
for i, (images, target, file_names) in iterator:
images.requires_grad = False
images = images.cuda()
mask = my_explanation(images, max_iterations, target)
mask_np = (mask.cpu().detach().numpy())
for idx, file_name in enumerate(file_names):
mask_file = ('{}_mask.npy'.format(file_name.split('/')[-1].split('.JPEG')[0]))
np.save(os.path.abspath(os.path.join(save_path, mask_file)), 1 - mask_np[idx, 0, :, :])
print('Time taken: {:.3f}'.format(time.time() - init_time))