-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_tsn.py
147 lines (118 loc) · 5.13 KB
/
test_tsn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import argparse
import time
import numpy as np
import torch.nn.parallel
import torch.optim
from sklearn.metrics import confusion_matrix
import torchvision
from dataset import *
from transforms import *
from model.models import *
from model.ops import ConsensusModule
# options
parser = argparse.ArgumentParser(
description="Standard video-level testing")
parser.add_argument('--modality', type=str, choices=['RGB', 'Flow', 'RGBDiff'], default="RGB")
parser.add_argument('--weights', type=str)
parser.add_argument('--arch', type=str, default="resnet101")
parser.add_argument('--save_scores', type=str, default=None)
parser.add_argument('--test_segments', type=int, default=25)
parser.add_argument('--max_num', type=int, default=-1)
parser.add_argument('--test_crops', type=int, default=10)
parser.add_argument('--input_size', type=int, default=224)
parser.add_argument('--crop_fusion_type', type=str, default='avg',
choices=['avg', 'max', 'topk'])
parser.add_argument('--k', type=int, default=3)
parser.add_argument('--dropout', type=float, default=0.7)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# parser.add_argument('--gpus', nargs='+', type=int, default=None)
parser.add_argument('--flow_prefix', type=str, default='')
parser.add_argument('--context', default=False, action="store_true")
parser.add_argument('--categorical', default=True, action="store_true")
parser.add_argument('--continuous', default=True, action="store_true")
args = parser.parse_args()
model = 'rgb_with_context_tsn.pth.tar' # 0.2157
model = 'flow_tsn.pth.tar' # 0.2213
if args.modality == 'RGB':
data_length = 1
elif args.modality == 'Flow':
data_length = 5
args.weights = model
args.test_crops = 1
args.test_segments = 25
print(args)
net = TSN(26, 1, args.modality,
base_model=args.arch, new_length=data_length,
consensus_type=args.crop_fusion_type, embed=True, context=args.context,
dropout=args.dropout)
features_blobs = []
checkpoint = torch.load(args.weights)
base_dict = {'.'.join(k.split('.')[1:]): v for k,v in list(checkpoint['state_dict'].items())}
a = net.load_state_dict(base_dict, strict=True)
if args.test_crops == 1:
cropping = torchvision.transforms.Compose([
GroupScale((224,224)),
])
elif args.test_crops == 10:
cropping = torchvision.transforms.Compose([
GroupOverSample(224, 224)
])
else:
raise ValueError("Only 1 and 10 crops are supported while we got {}".format(args.test_crops))
data_loader = torch.utils.data.DataLoader(
TSNDataSet("test", num_segments=args.test_segments, context=args.context,
new_length=1 if args.modality == "RGB" else 5,
modality=args.modality,
image_tmpl="img_{:05d}.jpg" if args.modality in ['RGB', 'RGBDiff'] else args.flow_prefix+"{}_{:05d}.jpg",
test_mode=True,
transform=torchvision.transforms.Compose([
cropping,
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=args.arch != 'BNInception'),
GroupNormalize(net.input_mean, net.input_std),
])),
batch_size=1, shuffle=False,
num_workers=args.workers * 2, pin_memory=True)
devices = [0]
net = torch.nn.DataParallel(net.cuda(), device_ids=devices)
net.eval()
data_gen = enumerate(data_loader)
total_num = len(data_loader.dataset)
output = []
def eval_video(video_data):
i, data, label, label_cont = video_data
num_crop = args.test_crops
if args.modality == 'RGB':
length = 3
elif args.modality == 'Flow':
length = 10
elif args.modality == 'RGBDiff':
length = 18
else:
raise ValueError("Unknown modality "+args.modality)
input_var = torch.autograd.Variable(data.view(-1, length, data.size(2), data.size(3)),
volatile=True)
out = net(input_var, None)
rst = torch.sigmoid(out['categorical']).data.cpu().numpy().copy()
rst_cont = torch.sigmoid(out['continuous']).data.cpu().numpy().copy()
return i, rst.reshape((num_crop, args.test_segments, 26)).mean(axis=0).reshape(
(args.test_segments, 1, 26)
), rst_cont.reshape((num_crop, args.test_segments, 3)).mean(axis=0).reshape(
(args.test_segments, 1, 3)
)
proc_start_time = time.time()
max_num = args.max_num if args.max_num > 0 else len(data_loader.dataset)
import random
for i, batch in data_gen:
# print(batch)
data, embeddings = batch
rst = eval_video((i, data, None, None))
output.append(rst[1:])
cnt_time = time.time() - proc_start_time
print('video {} done, total {}/{}, average {} sec/video'.format(i, i+1,
total_num,
float(cnt_time) / (i+1)))
video_pred = np.squeeze(np.array([np.mean(x[0], axis=0) for x in output]))
video_pred_cont = np.squeeze(np.array([np.mean(x[1], axis=0) for x in output]))
print(video_pred.shape, video_pred_cont.shape)