-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_tsn.py
165 lines (130 loc) · 6.02 KB
/
train_tsn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import collections
import torch
import numpy as np
import model.loss as module_loss
import model.metric as module_metric
from parse_config import ConfigParser
from transforms import *
from logger import setup_logging
from model import loss
from trainer.trainer import Trainer
from dataset import TSNDataSet
from model.models import TSN
# fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(args, config):
if args.modality == 'RGB':
data_length = 1
elif args.modality == 'Flow':
data_length = 5
model = TSN(26, args.num_segments, args.modality,
base_model=args.arch, new_length=data_length, embed=args.embed,
consensus_type=args.consensus_type, dropout=args.dropout, partial_bn=not args.no_partialbn, context=args.context)
input_mean = model.input_mean
input_std = model.input_std
policies = model.get_optim_policies()
normalize = GroupNormalize(input_mean, input_std)
dataset = TSNDataSet("train", num_segments=args.num_segments,
context=args.context,
new_length=data_length,
modality=args.modality,
image_tmpl="img_{:05d}.jpg" if args.modality in ["RGB"] else args.flow_prefix+"{}_{:05d}.jpg",
transform=torchvision.transforms.Compose([
GroupScale((224,224)),
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=args.arch != 'BNInception'),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=False)
val_loader = torch.utils.data.DataLoader(
TSNDataSet("val", num_segments=args.num_segments,
context=args.context,
new_length=data_length,
modality=args.modality,
image_tmpl="img_{:05d}.jpg" if args.modality in ["RGB"] else args.flow_prefix+"{}_{:05d}.jpg",
random_shift=False,
transform=torchvision.transforms.Compose([
GroupScale((int(224),int(224))),
Stack(roll=args.arch == 'BNInception'),
ToTorchFormatTensor(div=args.arch != 'BNInception'),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
logger = config.get_logger('train')
logger.info(model)
# get function handles of loss and metrics
criterion_categorical = getattr(module_loss, config['loss'])
criterion_continuous = getattr(module_loss, config['loss_continuous'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
metrics_continuous = [getattr(module_metric, met) for met in config['metrics_continuous']]
optimizer = torch.optim.SGD(policies,
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
for param_group in optimizer.param_groups:
print(param_group['lr'])
trainer = Trainer(model, criterion_categorical, criterion_continuous, metrics, metrics_continuous, optimizer,
config=config,
data_loader=train_loader,
valid_data_loader=val_loader,
lr_scheduler=lr_scheduler, embed=args.embed)
trainer.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
parser.add_argument('--modality', type=str, choices=['RGB', 'Flow', 'RGBDiff', 'depth'])
# ========================= Model Configs ==========================
parser.add_argument('--arch', type=str, default="resnet101")
parser.add_argument('--num_segments', type=int, default=3)
parser.add_argument('--consensus_type', type=str, default='avg',
choices=['avg', 'max', 'topk', 'identity', 'rnn', 'cnn'])
parser.add_argument('--k', type=int, default=3)
parser.add_argument('--dropout', '--do', default=0.5, type=float,
metavar='DO', help='dropout ratio (default: 0.5)')
# ========================= Learning Configs ==========================
parser.add_argument('-b', '--batch-size', default=32, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('--clip-gradient', '--gd', default=None, type=float,
metavar='W', help='gradient norm clipping (default: disabled)')
parser.add_argument('--no_partialbn', '--npb', default=False, action="store_true")
parser.add_argument('--context', default=False, action="store_true")
parser.add_argument('--embed', default=False, action="store_true")
# ========================= Monitor Configs ==========================
parser.add_argument('--print-freq', '-p', default=20, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--eval-freq', '-ef', default=5, type=int,
metavar='N', help='evaluation frequency (default: 5)')
# ========================= Runtime Configs ==========================
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--flow_prefix', default="", type=str)
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--exp_name'], type=str, target='name'),
]
config = ConfigParser.from_args(parser, options)
print(config)
args = parser.parse_args()
main(args, config)