-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster.py
85 lines (67 loc) · 3.53 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from typing import Any,Sequence,List,Optional,Callable
import numpy as np
def list_cluster_members(labels:Sequence,true_lables:Sequence)->None:
for group in range(max(labels)+1):
print([true_lables[i] for i in np.where(labels==group)[0]])
def clusterize(X:Optional[Any]=None,true_labels:Optional[Sequence]=None,clusterizer:Optional[object]=None,dim_reducer:Optional[object]=None,
show_plot:Optional[bool]=True,show_metrics:Optional[bool]=True,list_members:Optional[bool]=True,title:str=None):
from sklearn import metrics
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler
if X is None:
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, true_labels = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,random_state=0)
if dim_reducer:X= dim_reducer.fit_transform(X)
X = StandardScaler().fit_transform(X)
# #############################################################################
# Compute DBSCAN
if clusterizer is None: clusterizer=DBSCAN(eps=0.8, min_samples=3)
db = clusterizer.fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
if show_metrics:
if len(np.unique(labels))>1:print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels))
if true_labels:
print("Homogeneity: %0.3f" % metrics.homogeneity_score(true_labels, labels))
print("Completeness: %0.3f" % metrics.completeness_score(true_labels, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(true_labels, labels))
print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(true_labels, labels))
print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(true_labels, labels))
# #############################################################################
# Plot result
if show_plot:
import matplotlib.pyplot as plt
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6)
if title:
plt.title(title)
else:
plt.title('Estimated number of clusters: %d' % n_clusters_)
if true_labels:
for i in range(len(true_labels)):
plt.annotate(true_labels[i],(X[i,0],X[i,1]))
plt.axis('off')
plt.show()
if true_labels:
if list_members: list_cluster_members(labels,true_labels)
return labels