This repository has been archived by the owner on Sep 16, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 11
/
MSetListWithDups.v
822 lines (705 loc) · 21.6 KB
/
MSetListWithDups.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
(*
* Efficiently Executable Sets Library
* Author: FireEye, Inc. - Formal Methods Team <[email protected]>
*
* Copyright (C) 2016 FireEye Technologie Deutschland GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library.
* If not, see <http://www.gnu.org/licenses/>.
*)
(** * Weak sets implemented as lists with duplicates
This file contains an implementation of the weak set interface
[WSetsOnWithDupsExtra]. As a datatype unsorted lists are used
that might contain duplicates.
This implementation is useful, if one needs very efficient
insert and union operation, and can guarantee that one does not
add too many duplicates. The operation [elements_dist] is implemented
by sorting the list first. Therefore this instantiation can only
be used if the element type is ordered.
*)
Require Export MSetInterface.
Require Import ssreflect.
Require Import List OrdersFacts OrdersLists.
Require Import Sorting Permutation.
Require Import MSetWithDups.
(** ** Removing duplicates from sorted lists
The following module [RemoveDupsFromSorted] defines an operation
[remove_dups_from_sortedA] that removes duplicates from a sorted
list. In order to talk about sorted lists, the element type needs
to be ordered.
This function is combined with a sort function to get a function
[remove_dups_by_sortingA] to sort unsorted lists and then remove
duplicates. *)
Module RemoveDupsFromSorted (Import X:OrderedType).
(** First, we need some infrastructure for our ordered type *)
Module Import MX := OrderedTypeFacts X.
Module Import XTotalLeBool <: TotalLeBool.
Definition t := X.t.
Definition leb x y :=
match X.compare x y with
| Lt => true
| Eq => true
| Gt => false
end.
Infix "<=?" := leb (at level 35).
Theorem leb_total : forall (a1 a2 : t), (a1 <=? a2 = true) \/ (a2 <=? a1 = true).
Proof.
intros a1 a2.
unfold leb.
rewrite (compare_antisym a1 a2).
case (X.compare a1 a2); rewrite /=; tauto.
Qed.
Definition le x y := (leb x y = true).
End XTotalLeBool.
Lemma eqb_eq_alt : forall x y, eqb x y = true <-> eq x y.
Proof.
intros x y.
rewrite eqb_alt -compare_eq_iff.
case (compare x y) => //.
Qed.
(** Now we can define our main function *)
Fixpoint remove_dups_from_sortedA_aux (acc : list t) (l : list t) : list t :=
match l with
| nil => List.rev' acc
| x :: xs =>
match xs with
| nil => List.rev' (x :: acc)
| y :: ys =>
if eqb x y then
remove_dups_from_sortedA_aux acc xs
else
remove_dups_from_sortedA_aux (x::acc) xs
end
end.
Definition remove_dups_from_sortedA := remove_dups_from_sortedA_aux (nil : list t).
(** We can prove some technical lemmata *)
Lemma remove_dups_from_sortedA_aux_alt : forall (l : list X.t) acc,
remove_dups_from_sortedA_aux acc l =
List.rev acc ++ (remove_dups_from_sortedA l).
Proof.
unfold remove_dups_from_sortedA.
induction l as [| x xs IH] => acc. {
rewrite /remove_dups_from_sortedA_aux /rev' -!rev_alt /= app_nil_r //.
} {
rewrite /=.
case_eq xs. {
rewrite /rev' -!rev_alt //.
} {
move => y ys H_xs_eq.
rewrite -!H_xs_eq !(IH acc) !(IH (x :: acc)) (IH (x::nil)).
case (eqb x y) => //.
rewrite /= -app_assoc //.
}
}
Qed.
Lemma remove_dups_from_sortedA_alt :
forall (l : list t),
remove_dups_from_sortedA l =
match l with
| nil => nil
| x :: xs =>
match xs with
| nil => l
| y :: ys =>
if eqb x y then
remove_dups_from_sortedA xs
else
x :: remove_dups_from_sortedA xs
end
end.
Proof.
case. {
done.
} {
intros x xs.
rewrite /remove_dups_from_sortedA /= /rev' /=.
case xs => //.
move => y ys.
rewrite !remove_dups_from_sortedA_aux_alt /= //.
}
Qed.
Lemma remove_dups_from_sortedA_hd :
forall x xs,
exists (x':t) xs',
remove_dups_from_sortedA (x :: xs) =
(x' :: xs') /\ (eqb x x' = true).
Proof.
intros x xs.
move : x;
induction xs as [| y ys IH] => x. {
rewrite remove_dups_from_sortedA_alt.
exists x, nil.
split; first reflexivity.
rewrite eqb_alt compare_refl //.
} {
rewrite remove_dups_from_sortedA_alt.
case_eq (eqb x y); last first. {
move => _.
exists x, (remove_dups_from_sortedA (y :: ys)).
split; first reflexivity.
rewrite eqb_alt compare_refl //.
} {
move => H_eqb_xy.
move : (IH y) => {IH} [x'] [xs'] [->] H_eqb_yx'.
exists x', xs'.
split; first done.
move : H_eqb_xy H_eqb_yx'.
rewrite !eqb_eq_alt.
apply MX.eq_trans.
}
}
Qed.
(** Finally we get our main result for removing duplicates from sorted lists *)
Lemma remove_dups_from_sortedA_spec :
forall (l : list t),
Sorted le l ->
let l' := remove_dups_from_sortedA l in (
Sorted lt l' /\
NoDupA eq l' /\
(forall x, InA eq x l <-> InA eq x l')).
Proof.
simpl.
induction l as [| x xs IH]. {
rewrite remove_dups_from_sortedA_alt.
done.
} {
rewrite remove_dups_from_sortedA_alt.
move : IH.
case xs => {xs}. {
move => _.
split; last split. {
apply Sorted_cons => //.
} {
apply NoDupA_singleton.
} {
done.
}
} {
move => y ys IH H_sorted_x_y_ys.
apply Sorted_inv in H_sorted_x_y_ys as [H_sorted_y_ys H_hd_rel].
apply HdRel_inv in H_hd_rel.
have : exists y' ys',
remove_dups_from_sortedA (y :: ys) = y' :: ys' /\
eqb y y' = true. {
apply remove_dups_from_sortedA_hd => //.
}
move => [y'] [ys'] [H_yys'_intro] /eqb_eq_alt H_eq_y_y'.
move : (IH H_sorted_y_ys).
rewrite !H_yys'_intro.
move => {IH} [IH1] [IH2] IH3.
case_eq (eqb x y). {
rewrite eqb_eq_alt => H_eq_x_y.
split => //.
split => //.
move => x'.
rewrite InA_cons IH3.
split; last tauto.
move => [] //.
move => H_eq_x'_x.
apply InA_cons_hd.
apply eq_trans with (y := x) => //.
apply eq_trans with (y := y) => //.
}
move => H_neqb_x_y.
have H_sorted : Sorted lt (x :: y' :: ys'). {
apply Sorted_cons => //.
apply HdRel_cons.
rewrite -compare_lt_iff.
suff : (compare x y = Lt). {
setoid_rewrite compare_compat; eauto;
apply eq_refl.
}
move : H_hd_rel H_neqb_x_y.
rewrite eqb_alt /le /leb.
case (compare x y) => //.
}
split; last split. {
assumption.
} {
apply NoDupA_cons => //.
move => /InA_alt [x'] [H_eq_xx'] H_in_x'.
have : Forall (lt x) (y' :: ys'). {
apply Sorted_extends => //.
rewrite /Relations_1.Transitive.
by apply lt_trans.
}
rewrite Forall_forall => H_forall.
move : (H_forall _ H_in_x') => {H_forall}.
move : H_eq_xx'.
rewrite -compare_lt_iff -compare_eq_iff.
move => -> //.
} {
move => x0.
rewrite !(InA_cons eq x0 x) IH3 //.
}
}
}
Qed.
(** Next, we combine it with sorting *)
Module Import XSort := Sort XTotalLeBool.
Definition remove_dups_by_sortingA (l : list t) : list t :=
remove_dups_from_sortedA (XSort.sort l).
Lemma remove_dups_by_sortingA_spec :
forall (l : list t),
let l' := remove_dups_by_sortingA l in (
Sorted lt l' /\
NoDupA eq l' /\
(forall x, InA eq x l <-> InA eq x l')).
Proof.
intro l.
suff : (forall x : X.t, InA eq x (sort l) <-> InA eq x l) /\
Sorted le (sort l). {
unfold remove_dups_by_sortingA.
move : (remove_dups_from_sortedA_spec (sort l)).
simpl.
move => H_spec [H_in_sort H_sorted_sort].
move : (H_spec H_sorted_sort).
move => [H1] [H2] H3.
split => //.
split => //.
move => x.
rewrite -H_in_sort H3 //.
}
split. {
have H_in_sort : forall x, List.In x (XSort.sort l) <-> List.In x l. {
intros x.
have H_perm := (XSort.Permuted_sort l).
split; apply Permutation_in => //.
by apply Permutation_sym.
}
intros x.
rewrite !InA_alt.
setoid_rewrite H_in_sort => //.
} {
move : (LocallySorted_sort l).
rewrite /is_true /le /leb //.
}
Qed.
End RemoveDupsFromSorted.
(** ** Operations Module
With removing duplicates defined, we can implement
the operations for our set implementation easily.
*)
Module Ops (X:OrderedType) <: WOps X.
Module RDFS := RemoveDupsFromSorted X.
Module Import MX := OrderedTypeFacts X.
Definition elt := X.t.
Definition t := list elt.
Definition empty : t := nil.
Definition is_empty (l : t) := match l with nil => true | _ => false end.
Fixpoint mem (x : elt) (s : t) : bool :=
match s with
| nil => false
| y :: l =>
match X.compare x y with
Eq => true
| _ => mem x l
end
end.
Definition add x (s : t) := x :: s.
Definition singleton (x : elt) := x :: nil.
Fixpoint rev_filter_aux acc (f : elt -> bool) s :=
match s with
nil => acc
| (x :: xs) => rev_filter_aux (if (f x) then (x :: acc) else acc) f xs
end.
Definition rev_filter := rev_filter_aux nil.
Definition filter (f : elt -> bool) (s : t) : t := rev_filter f s.
Definition remove x s :=
rev_filter (fun y => match X.compare x y with Eq => false | _ => true end) s.
Definition union (s1 s2 : t) : t :=
List.rev_append s2 s1.
Definition inter (s1 s2 : t) : t :=
rev_filter (fun y => mem y s2) s1.
Definition elements (x : t) : list elt := x.
Definition elements_dist (x : t) : list elt :=
RDFS.remove_dups_by_sortingA x.
Definition fold {B : Type} (f : elt -> B -> B) (s : t) (i : B) : B :=
fold_left (flip f) (elements s) i.
Definition diff (s s' : t) : t := fold remove s' s.
Definition subset (s s' : t) : bool :=
List.forallb (fun x => mem x s') s.
Definition equal (s s' : t) : bool := andb (subset s s') (subset s' s).
Fixpoint for_all (f : elt -> bool) (s : t) : bool :=
match s with
| nil => true
| x :: l => if f x then for_all f l else false
end.
Fixpoint exists_ (f : elt -> bool) (s : t) : bool :=
match s with
| nil => false
| x :: l => if f x then true else exists_ f l
end.
Fixpoint partition_aux (a1 a2 : t) (f : elt -> bool) (s : t) : t * t :=
match s with
| nil => (a1, a2)
| x :: l =>
if f x then partition_aux (x :: a1) a2 f l else
partition_aux a1 (x :: a2) f l
end.
Definition partition := partition_aux nil nil.
Definition cardinal (s : t) : nat := length (elements_dist s).
Definition choose (s : t) : option elt :=
match s with
| nil => None
| x::_ => Some x
end.
End Ops.
(** ** Main Module
Using these operations, we can define the main functor. For this,
we need to prove that the provided operations do indeed satisfy
the weak set interface. This is mostly straightforward and
unsurprising. The only interesting part is that removing
duplicates from a sorted list behaves as expected. This has
however already been proved in module [RemoveDupsFromSorted].
*)
Module Make (E:OrderedType) <: WSetsOnWithDupsExtra E.
Include Ops E.
Import MX.
(** ** Proofs of set operation specifications. *)
(** Logical predicates *)
Definition In x (s : t) := SetoidList.InA E.eq x s.
Instance In_compat : Proper (E.eq==>eq==>iff) In.
Proof. repeat red. intros. rewrite H H0. auto. Qed.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
Definition Subset s s' := forall a : elt, In a s -> In a s'.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).
Definition eq : t -> t -> Prop := Equal.
Lemma eq_equiv : Equivalence eq.
Proof.
constructor. {
done.
} {
by constructor; rewrite H.
} {
by constructor; rewrite H H0.
}
Qed.
(** Specifications of set operators *)
Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing).
Lemma mem_spec : forall s x, mem x s = true <-> In x s.
Proof.
induction s as [| y s' IH]. {
move => x.
rewrite /= /In InA_nil.
split => //.
} {
move => x.
rewrite /= /In InA_cons.
move : (MX.compare_eq_iff x y).
case (E.compare x y). {
tauto.
} {
rewrite IH; intuition; inversion H.
} {
rewrite IH; intuition; inversion H.
}
}
Qed.
Lemma subset_spec : forall s s', subset s s' = true <-> s[<=]s'.
Proof.
intros s s'.
rewrite /subset forallb_forall /Subset /In.
split. {
move => H z /InA_alt [] x [H_z_eq] H_in.
move : (H _ H_in).
rewrite mem_spec.
setoid_replace z with x => //.
} {
move => H z H_in.
rewrite mem_spec.
apply H, In_InA => //.
apply E.eq_equiv.
}
Qed.
Lemma equal_spec : forall s s', equal s s' = true <-> s[=]s'.
Proof.
intros s s'.
rewrite /Equal /equal Bool.andb_true_iff !subset_spec /Subset.
split. {
move => [H1 H2] a.
split.
- by apply H1.
- by apply H2.
} {
move => H.
split; move => a; rewrite H //.
}
Qed.
Lemma eq_dec : forall x y : t, {eq x y} + {~ eq x y}.
Proof.
intros x y.
change ({Equal x y}+{~Equal x y}).
destruct (equal x y) eqn:H; [left|right];
rewrite <- equal_spec; congruence.
Qed.
Lemma empty_spec : Empty empty.
Proof. rewrite /Empty /empty /In. move => a /InA_nil //. Qed.
Lemma is_empty_spec : forall s, is_empty s = true <-> Empty s.
Proof.
rewrite /is_empty /Empty /In.
case; split => //. {
move => _ a.
rewrite InA_nil //.
} {
move => H; contradiction (H a).
apply InA_cons_hd.
apply Equivalence_Reflexive.
}
Qed.
Lemma add_spec : forall s x y, In y (add x s) <-> E.eq y x \/ In y s.
Proof.
intros s x y.
rewrite /add /In InA_cons //.
Qed.
Lemma singleton_spec : forall x y, In y (singleton x) <-> E.eq y x.
Proof.
intros x y.
rewrite /singleton /In InA_cons.
split. {
move => [] // /InA_nil //.
} {
by left.
}
Qed.
Hint Resolve (@Equivalence_Reflexive _ _ E.eq_equiv).
Hint Immediate (@Equivalence_Symmetric _ _ E.eq_equiv).
Hint Resolve (@Equivalence_Transitive _ _ E.eq_equiv).
Lemma rev_filter_aux_spec : forall s acc x f, compatb f ->
(In x (rev_filter_aux acc f s) <-> (In x s /\ f x = true) \/ (In x acc)).
Proof.
intros s acc x f H_compat.
move : x acc.
induction s as [| y s' IH]. {
intros x acc.
rewrite /rev_filter_aux /In InA_nil.
tauto.
} {
intros x acc.
rewrite /= IH /In.
case_eq (f y) => H_fy; rewrite !InA_cons; intuition. {
left.
split; first by left.
setoid_replace x with y => //.
} {
contradict H1.
setoid_replace x with y => //.
by rewrite H_fy.
}
}
Qed.
Lemma filter_spec : forall s x f, compatb f ->
(In x (filter f s) <-> In x s /\ f x = true).
Proof.
intros s x f H_compat.
rewrite /filter /rev_filter rev_filter_aux_spec /In InA_nil.
tauto.
Qed.
Lemma remove_spec : forall s x y, In y (remove x s) <-> In y s /\ ~E.eq y x.
Proof.
intros s x y.
rewrite /remove /rev_filter.
have H_compat : compatb ((fun y0 : elt =>
match E.compare x y0 with
| Eq => false
| _ => true
end)). {
repeat red; intros.
setoid_replace x0 with y0 => //.
}
rewrite rev_filter_aux_spec /In InA_nil.
have -> : (E.eq y x <-> E.eq x y). {
split; move => ?; by apply Equivalence_Symmetric.
}
rewrite -compare_eq_iff.
case (E.compare x y). {
intuition.
} {
intuition.
inversion H0.
} {
intuition.
inversion H0.
}
Qed.
Lemma union_spec : forall s s' x, In x (union s s') <-> In x s \/ In x s'.
Proof.
intros s s' x.
rewrite /union /In rev_append_rev InA_app_iff InA_rev; tauto.
Qed.
Lemma inter_spec : forall s s' x, In x (inter s s') <-> In x s /\ In x s'.
Proof.
intros s s' x.
have H_compat : compatb (fun y : elt => mem y s'). {
repeat red; intros.
suff : ( mem x0 s' = true <-> mem y s' = true). {
case (mem y s'), (mem x0 s'); intuition.
}
rewrite !mem_spec /In.
setoid_replace x0 with y => //.
}
rewrite /inter rev_filter_aux_spec mem_spec /In InA_nil.
tauto.
Qed.
Lemma fold_spec : forall s (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (flip f) (elements s) i.
Proof. done. Qed.
Lemma elements_spec1 : forall s x, InA E.eq x (elements s) <-> In x s.
Proof.
intros s x.
rewrite /elements /In //.
Qed.
Lemma diff_spec : forall s s' x, In x (diff s s') <-> In x s /\ ~In x s'.
Proof.
intros s s' x.
rewrite /diff fold_spec -(elements_spec1 s').
move : s.
induction (elements s') as [| y ys IH] => s. {
rewrite InA_nil /=; tauto.
} {
rewrite /= IH InA_cons /flip remove_spec.
tauto.
}
Qed.
Lemma cardinal_spec : forall s, cardinal s = length (elements_dist s).
Proof. rewrite /cardinal //. Qed.
Lemma for_all_spec : forall s f, compatb f ->
(for_all f s = true <-> For_all (fun x => f x = true) s).
Proof.
intros s f H_compat.
rewrite /For_all.
induction s as [| x xs IH]. {
rewrite /= /In.
split => //.
move => _ x /InA_nil //.
} {
rewrite /=.
case_eq (f x) => H_fx. {
rewrite IH.
split. {
move => H x' /InA_cons []. {
move => -> //.
} {
apply H.
}
} {
move => H x' H_in.
apply H.
apply InA_cons.
by right.
}
} {
split => //.
move => H.
suff : f x = true. {
rewrite H_fx //.
}
apply H.
apply InA_cons_hd.
done.
}
}
Qed.
Lemma exists_spec : forall s f, compatb f ->
(exists_ f s = true <-> Exists (fun x => f x = true) s).
Proof.
intros s f H_compat.
rewrite /Exists.
induction s as [| x xs IH]. {
rewrite /= /In.
split => //.
move => [x] [] /InA_nil //.
} {
rewrite /=.
case_eq (f x) => H_fx. {
split => // _.
exists x.
split => //.
apply InA_cons_hd.
done.
} {
rewrite IH.
split. {
move => [x'] [H_in] H_fx'.
exists x'.
split => //.
apply InA_cons.
by right.
} {
move => [x'] [] /InA_cons []. {
move => ->.
rewrite H_fx //.
} {
by exists x'.
}
}
}
}
Qed.
Lemma partition_aux_spec : forall a1 a2 s f,
(partition_aux a1 a2 f s = (rev_filter_aux a1 f s, rev_filter_aux a2 (fun x => negb (f x)) s)).
Proof.
move => a1 a2 s f.
move : a1 a2.
induction s as [| x xs IH]. {
rewrite /partition_aux /rev_filter_aux //.
} {
intros a1 a2.
rewrite /= IH.
case (f x) => //.
}
Qed.
Lemma partition_spec1 : forall s f, compatb f ->
fst (partition f s) [=] filter f s.
Proof.
move => s f _.
rewrite /partition partition_aux_spec /fst /filter /rev_filter //.
Qed.
Lemma partition_spec2 : forall s f, compatb f ->
snd (partition f s) [=] filter (fun x => negb (f x)) s.
Proof.
move => s f _.
rewrite /partition partition_aux_spec /snd /filter /rev_filter //.
Qed.
Lemma choose_spec1 : forall s x, choose s = Some x -> In x s.
Proof.
move => [] // y s' x [->].
rewrite /In.
apply InA_cons_hd.
apply Equivalence_Reflexive.
Qed.
Lemma choose_spec2 : forall s, choose s = None -> Empty s.
Proof. move => [] // _ a. rewrite /In InA_nil //. Qed.
Lemma elements_dist_spec_full :
forall s,
Sorted E.lt (elements_dist s) /\
NoDupA E.eq (elements_dist s) /\
(forall x, InA E.eq x (elements_dist s) <-> InA E.eq x (elements s)).
Proof.
move => s.
rewrite /elements_dist /elements.
move : (RDFS.remove_dups_by_sortingA_spec s).
simpl.
firstorder.
Qed.
Lemma elements_dist_spec1 : forall x s, InA E.eq x (elements_dist s) <->
InA E.eq x (elements s).
Proof. intros; apply elements_dist_spec_full. Qed.
Lemma elements_dist_spec2w : forall s, NoDupA E.eq (elements_dist s).
Proof. intros; apply elements_dist_spec_full. Qed.
End Make.