forked from Sarasra/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_providers.py
505 lines (427 loc) · 20.3 KB
/
data_providers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines data providers used in training and evaluating TCNs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import random
import numpy as np
import preprocessing
import tensorflow as tf
def record_dataset(filename):
"""Generate a TFRecordDataset from a `filename`."""
return tf.data.TFRecordDataset(filename)
def full_sequence_provider(file_list, num_views):
"""Provides full preprocessed image sequences.
Args:
file_list: List of strings, paths to TFRecords to preprocess.
num_views: Int, the number of simultaneous viewpoints at each timestep in
the dataset.
Returns:
preprocessed: A 4-D float32 `Tensor` holding a sequence of preprocessed
images.
raw_image_strings: A 2-D string `Tensor` holding a sequence of raw
jpeg-encoded image strings.
task: String, the name of the sequence.
seq_len: Int, the number of timesteps in the sequence.
"""
def _parse_sequence(x):
context, views, seq_len = parse_sequence_example(x, num_views)
task = context['task']
return views, task, seq_len
data_files = tf.contrib.slim.parallel_reader.get_data_files(file_list)
dataset = tf.data.Dataset.from_tensor_slices(data_files)
dataset = dataset.repeat(1)
# Get a dataset of sequences.
dataset = dataset.flat_map(record_dataset)
# Build a dataset of TFRecord files.
dataset = dataset.repeat(1)
# Prefetch a number of opened files.
dataset = dataset.prefetch(12)
# Use _parse_sequence to deserialize (but not decode) image strings.
dataset = dataset.map(_parse_sequence, num_parallel_calls=12)
# Prefetch batches of images.
dataset = dataset.prefetch(12)
dataset = dataset.make_one_shot_iterator()
views, task, seq_len = dataset.get_next()
return views, task, seq_len
def parse_labeled_example(
example_proto, view_index, preprocess_fn, image_attr_keys, label_attr_keys):
"""Parses a labeled test example from a specified view.
Args:
example_proto: A scalar string Tensor.
view_index: Int, index on which view to parse.
preprocess_fn: A function with the signature (raw_images, is_training) ->
preprocessed_images, where raw_images is a 4-D float32 image `Tensor`
of raw images, is_training is a Boolean describing if we're in training,
and preprocessed_images is a 4-D float32 image `Tensor` holding
preprocessed images.
image_attr_keys: List of Strings, names for image keys.
label_attr_keys: List of Strings, names for label attributes.
Returns:
data: A tuple of images, attributes and tasks `Tensors`.
"""
features = {}
for attr_key in image_attr_keys:
features[attr_key] = tf.FixedLenFeature((), tf.string)
for attr_key in label_attr_keys:
features[attr_key] = tf.FixedLenFeature((), tf.int64)
parsed_features = tf.parse_single_example(example_proto, features)
image_only_keys = [i for i in image_attr_keys if 'image' in i]
view_image_key = image_only_keys[view_index]
image = preprocessing.decode_image(parsed_features[view_image_key])
preprocessed = preprocess_fn(image, is_training=False)
attributes = [parsed_features[k] for k in label_attr_keys]
task = parsed_features['task']
return tuple([preprocessed] + attributes + [task])
def labeled_data_provider(
filenames, preprocess_fn, view_index, image_attr_keys, label_attr_keys,
batch_size=32, num_epochs=1):
"""Gets a batched dataset iterator over annotated test images + labels.
Provides a single view, specifed in `view_index`.
Args:
filenames: List of Strings, paths to tfrecords on disk.
preprocess_fn: A function with the signature (raw_images, is_training) ->
preprocessed_images, where raw_images is a 4-D float32 image `Tensor`
of raw images, is_training is a Boolean describing if we're in training,
and preprocessed_images is a 4-D float32 image `Tensor` holding
preprocessed images.
view_index: Int, the index of the view to embed.
image_attr_keys: List of Strings, names for image keys.
label_attr_keys: List of Strings, names for label attributes.
batch_size: Int, size of the batch.
num_epochs: Int, number of epochs over the classification dataset.
Returns:
batch_images: 4-d float `Tensor` holding the batch images for the view.
labels: K-d int `Tensor` holding the K label attributes.
tasks: 1-D String `Tensor`, holding the task names for each batch element.
"""
dataset = tf.data.TFRecordDataset(filenames)
# pylint: disable=g-long-lambda
dataset = dataset.map(
lambda p: parse_labeled_example(
p, view_index, preprocess_fn, image_attr_keys, label_attr_keys))
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size)
data_iterator = dataset.make_one_shot_iterator()
batch_data = data_iterator.get_next()
batch_images = batch_data[0]
batch_labels = tf.stack(batch_data[1:-1], 1)
batch_tasks = batch_data[-1]
batch_images = set_image_tensor_batch_dim(batch_images, batch_size)
batch_labels.set_shape([batch_size, len(label_attr_keys)])
batch_tasks.set_shape([batch_size])
return batch_images, batch_labels, batch_tasks
def parse_sequence_example(serialized_example, num_views):
"""Parses a serialized sequence example into views, sequence length data."""
context_features = {
'task': tf.FixedLenFeature(shape=[], dtype=tf.string),
'len': tf.FixedLenFeature(shape=[], dtype=tf.int64)
}
view_names = ['view%d' % i for i in range(num_views)]
fixed_features = [
tf.FixedLenSequenceFeature(
shape=[], dtype=tf.string) for _ in range(len(view_names))]
sequence_features = dict(zip(view_names, fixed_features))
context_parse, sequence_parse = tf.parse_single_sequence_example(
serialized=serialized_example,
context_features=context_features,
sequence_features=sequence_features)
views = tf.stack([sequence_parse[v] for v in view_names])
lens = [sequence_parse[v].get_shape().as_list()[0] for v in view_names]
assert len(set(lens)) == 1
seq_len = tf.shape(sequence_parse[v])[0]
return context_parse, views, seq_len
def get_shuffled_input_records(file_list):
"""Build a tf.data.Dataset of shuffled input TFRecords that repeats."""
dataset = tf.data.Dataset.from_tensor_slices(file_list)
dataset = dataset.shuffle(len(file_list))
dataset = dataset.repeat()
dataset = dataset.flat_map(record_dataset)
dataset = dataset.repeat()
return dataset
def get_tcn_anchor_pos_indices(seq_len, num_views, num_pairs, window):
"""Gets batch TCN anchor positive timestep and view indices.
This gets random (anchor, positive) timesteps from a sequence, and chooses
2 random differing viewpoints for each anchor positive pair.
Args:
seq_len: Int, the size of the batch sequence in timesteps.
num_views: Int, the number of simultaneous viewpoints at each timestep.
num_pairs: Int, the number of pairs to build.
window: Int, the window (in frames) from which to take anchor, positive
and negative indices.
Returns:
ap_time_indices: 1-D Int `Tensor` with size [num_pairs], holding the
timestep for each (anchor,pos) pair.
a_view_indices: 1-D Int `Tensor` with size [num_pairs], holding the
view index for each anchor.
p_view_indices: 1-D Int `Tensor` with size [num_pairs], holding the
view index for each positive.
"""
# Get anchor, positive time indices.
def f1():
# Choose a random window-length range from the sequence.
range_min = tf.random_shuffle(tf.range(seq_len-window))[0]
range_max = range_min+window
return tf.range(range_min, range_max)
def f2():
# Consider the full sequence.
return tf.range(seq_len)
time_indices = tf.cond(tf.greater(seq_len, window), f1, f2)
shuffled_indices = tf.random_shuffle(time_indices)
num_pairs = tf.minimum(seq_len, num_pairs)
ap_time_indices = shuffled_indices[:num_pairs]
# Get opposing anchor, positive view indices.
view_indices = tf.tile(
tf.expand_dims(tf.range(num_views), 0), (num_pairs, 1))
shuffled_view_indices = tf.map_fn(tf.random_shuffle, view_indices)
a_view_indices = shuffled_view_indices[:, 0]
p_view_indices = shuffled_view_indices[:, 1]
return ap_time_indices, a_view_indices, p_view_indices
def set_image_tensor_batch_dim(tensor, batch_dim):
"""Sets the batch dimension on an image tensor."""
shape = tensor.get_shape()
tensor.set_shape([batch_dim, shape[1], shape[2], shape[3]])
return tensor
def parse_sequence_to_pairs_batch(
serialized_example, preprocess_fn, is_training, num_views, batch_size,
window):
"""Parses a serialized sequence example into a batch of preprocessed data.
Args:
serialized_example: A serialized SequenceExample.
preprocess_fn: A function with the signature (raw_images, is_training) ->
preprocessed_images.
is_training: Boolean, whether or not we're in training.
num_views: Int, the number of simultaneous viewpoints at each timestep in
the dataset.
batch_size: Int, size of the batch to get.
window: Int, only take pairs from a maximium window of this size.
Returns:
preprocessed: A 4-D float32 `Tensor` holding preprocessed images.
anchor_images: A 4-D float32 `Tensor` holding raw anchor images.
pos_images: A 4-D float32 `Tensor` holding raw positive images.
"""
_, views, seq_len = parse_sequence_example(serialized_example, num_views)
# Get random (anchor, positive) timestep and viewpoint indices.
num_pairs = batch_size // 2
ap_time_indices, a_view_indices, p_view_indices = get_tcn_anchor_pos_indices(
seq_len, num_views, num_pairs, window)
# Gather the image strings.
combined_anchor_indices = tf.concat(
[tf.expand_dims(a_view_indices, 1),
tf.expand_dims(ap_time_indices, 1)], 1)
combined_pos_indices = tf.concat(
[tf.expand_dims(p_view_indices, 1),
tf.expand_dims(ap_time_indices, 1)], 1)
anchor_images = tf.gather_nd(views, combined_anchor_indices)
pos_images = tf.gather_nd(views, combined_pos_indices)
# Decode images.
anchor_images = tf.map_fn(
preprocessing.decode_image, anchor_images, dtype=tf.float32)
pos_images = tf.map_fn(
preprocessing.decode_image, pos_images, dtype=tf.float32)
# Concatenate [anchor, postitive] images into a batch and preprocess it.
concatenated = tf.concat([anchor_images, pos_images], 0)
preprocessed = preprocess_fn(concatenated, is_training)
anchor_prepro, positive_prepro = tf.split(preprocessed, num_or_size_splits=2,
axis=0)
# Set static batch dimensions for all image tensors
ims = [anchor_prepro, positive_prepro, anchor_images, pos_images]
ims = [set_image_tensor_batch_dim(i, num_pairs) for i in ims]
[anchor_prepro, positive_prepro, anchor_images, pos_images] = ims
# Assign each anchor and positive the same label.
anchor_labels = tf.range(1, num_pairs+1)
positive_labels = tf.range(1, num_pairs+1)
return (anchor_prepro, positive_prepro, anchor_images, pos_images,
anchor_labels, positive_labels, seq_len)
def multiview_pairs_provider(file_list,
preprocess_fn,
num_views,
window,
is_training,
batch_size,
examples_per_seq=2,
num_parallel_calls=12,
sequence_prefetch_size=12,
batch_prefetch_size=12):
"""Provides multi-view TCN anchor-positive image pairs.
Returns batches of Multi-view TCN pairs, where each pair consists of an
anchor and a positive coming from different views from the same timestep.
Batches are filled one entire sequence at a time until
batch_size is exhausted. Pairs are chosen randomly without replacement
within a sequence.
Used by:
* triplet semihard loss.
* clustering loss.
* npairs loss.
* lifted struct loss.
* contrastive loss.
Args:
file_list: List of Strings, paths to tfrecords.
preprocess_fn: A function with the signature (raw_images, is_training) ->
preprocessed_images, where raw_images is a 4-D float32 image `Tensor`
of raw images, is_training is a Boolean describing if we're in training,
and preprocessed_images is a 4-D float32 image `Tensor` holding
preprocessed images.
num_views: Int, the number of simultaneous viewpoints at each timestep.
window: Int, size of the window (in frames) from which to draw batch ids.
is_training: Boolean, whether or not we're in training.
batch_size: Int, how many examples in the batch (num pairs * 2).
examples_per_seq: Int, how many examples to take per sequence.
num_parallel_calls: Int, the number of elements to process in parallel by
mapper.
sequence_prefetch_size: Int, size of the buffer used to prefetch sequences.
batch_prefetch_size: Int, size of the buffer used to prefetch batches.
Returns:
batch_images: A 4-D float32 `Tensor` holding preprocessed batch images.
anchor_labels: A 1-D int32 `Tensor` holding anchor image labels.
anchor_images: A 4-D float32 `Tensor` holding raw anchor images.
positive_labels: A 1-D int32 `Tensor` holding positive image labels.
pos_images: A 4-D float32 `Tensor` holding raw positive images.
"""
def _parse_sequence(x):
return parse_sequence_to_pairs_batch(
x, preprocess_fn, is_training, num_views, examples_per_seq, window)
# Build a buffer of shuffled input TFRecords that repeats forever.
dataset = get_shuffled_input_records(file_list)
# Prefetch a number of opened TFRecords.
dataset = dataset.prefetch(sequence_prefetch_size)
# Use _parse_sequence to map sequences to batches (one sequence per batch).
dataset = dataset.map(
_parse_sequence, num_parallel_calls=num_parallel_calls)
# Filter out sequences that don't have at least examples_per_seq.
def seq_greater_than_min(seqlen, maximum):
return seqlen >= maximum
filter_fn = functools.partial(seq_greater_than_min, maximum=examples_per_seq)
dataset = dataset.filter(lambda a, b, c, d, e, f, seqlen: filter_fn(seqlen))
# Take a number of sequences for the batch.
assert batch_size % examples_per_seq == 0
sequences_per_batch = batch_size // examples_per_seq
dataset = dataset.batch(sequences_per_batch)
# Prefetch batches of images.
dataset = dataset.prefetch(batch_prefetch_size)
iterator = dataset.make_one_shot_iterator()
data = iterator.get_next()
# Pull out images, reshape to [batch_size, ...], concatenate anchor and pos.
ims = list(data[:4])
anchor_labels, positive_labels = data[4:6]
# Set labels shape.
anchor_labels.set_shape([sequences_per_batch, None])
positive_labels.set_shape([sequences_per_batch, None])
def _reshape_to_batchsize(im):
"""[num_sequences, num_per_seq, ...] images to [batch_size, ...]."""
sequence_ims = tf.split(im, num_or_size_splits=sequences_per_batch, axis=0)
sequence_ims = [tf.squeeze(i) for i in sequence_ims]
return tf.concat(sequence_ims, axis=0)
# Reshape labels.
anchor_labels = _reshape_to_batchsize(anchor_labels)
positive_labels = _reshape_to_batchsize(positive_labels)
def _set_shape(im):
"""Sets a static shape for an image tensor of [sequences_per_batch,...] ."""
shape = im.get_shape()
im.set_shape([sequences_per_batch, shape[1], shape[2], shape[3], shape[4]])
return im
ims = [_set_shape(im) for im in ims]
ims = [_reshape_to_batchsize(im) for im in ims]
anchor_prepro, positive_prepro, anchor_images, pos_images = ims
batch_images = tf.concat([anchor_prepro, positive_prepro], axis=0)
return batch_images, anchor_labels, positive_labels, anchor_images, pos_images
def get_svtcn_indices(seq_len, batch_size, num_views):
"""Gets a random window of contiguous time indices from a sequence.
Args:
seq_len: Int, number of timesteps in the image sequence.
batch_size: Int, size of the batch to construct.
num_views: Int, the number of simultaneous viewpoints at each
timestep in the dataset.
Returns:
time_indices: 1-D Int `Tensor` with size [batch_size], holding the
timestep for each batch image.
view_indices: 1-D Int `Tensor` with size [batch_size], holding the
view for each batch image. This is consistent across the batch.
"""
# Get anchor, positive time indices.
def f1():
# Choose a random contiguous range from within the sequence.
range_min = tf.random_shuffle(tf.range(seq_len-batch_size))[0]
range_max = range_min+batch_size
return tf.range(range_min, range_max)
def f2():
# Consider the full sequence.
return tf.range(seq_len)
time_indices = tf.cond(tf.greater(seq_len, batch_size), f1, f2)
# Get opposing anchor, positive view indices.
random_view = tf.random_shuffle(tf.range(num_views))[0]
view_indices = tf.tile([random_view], (batch_size,))
return time_indices, view_indices
def parse_sequence_to_svtcn_batch(
serialized_example, preprocess_fn, is_training, num_views, batch_size):
"""Parses a serialized sequence example into a batch of SVTCN data."""
_, views, seq_len = parse_sequence_example(serialized_example, num_views)
# Get svtcn indices.
time_indices, view_indices = get_svtcn_indices(seq_len, batch_size, num_views)
combined_indices = tf.concat(
[tf.expand_dims(view_indices, 1),
tf.expand_dims(time_indices, 1)], 1)
# Gather the image strings.
images = tf.gather_nd(views, combined_indices)
# Decode images.
images = tf.map_fn(preprocessing.decode_image, images, dtype=tf.float32)
# Concatenate anchor and postitive images, preprocess the batch.
preprocessed = preprocess_fn(images, is_training)
return preprocessed, images, time_indices
def singleview_tcn_provider(file_list,
preprocess_fn,
num_views,
is_training,
batch_size,
num_parallel_calls=12,
sequence_prefetch_size=12,
batch_prefetch_size=12):
"""Provides data to train singleview TCNs.
Args:
file_list: List of Strings, paths to tfrecords.
preprocess_fn: A function with the signature (raw_images, is_training) ->
preprocessed_images, where raw_images is a 4-D float32 image `Tensor`
of raw images, is_training is a Boolean describing if we're in training,
and preprocessed_images is a 4-D float32 image `Tensor` holding
preprocessed images.
num_views: Int, the number of simultaneous viewpoints at each timestep.
is_training: Boolean, whether or not we're in training.
batch_size: Int, how many examples in the batch.
num_parallel_calls: Int, the number of elements to process in parallel by
mapper.
sequence_prefetch_size: Int, size of the buffer used to prefetch sequences.
batch_prefetch_size: Int, size of the buffer used to prefetch batches.
Returns:
batch_images: A 4-D float32 `Tensor` of preprocessed images.
raw_images: A 4-D float32 `Tensor` of raw images.
timesteps: A 1-D int32 `Tensor` of timesteps associated with each image.
"""
def _parse_sequence(x):
return parse_sequence_to_svtcn_batch(
x, preprocess_fn, is_training, num_views, batch_size)
# Build a buffer of shuffled input TFRecords that repeats forever.
dataset = get_shuffled_input_records(file_list)
# Prefetch a number of opened files.
dataset = dataset.prefetch(sequence_prefetch_size)
# Use _parse_sequence to map sequences to image batches.
dataset = dataset.map(
_parse_sequence, num_parallel_calls=num_parallel_calls)
# Prefetch batches of images.
dataset = dataset.prefetch(batch_prefetch_size)
dataset = dataset.make_one_shot_iterator()
batch_images, raw_images, timesteps = dataset.get_next()
return batch_images, raw_images, timesteps