forked from Sarasra/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
63 lines (54 loc) · 2.22 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Calculates running validation of TCN models (and baseline comparisons)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
from estimators.get_estimator import get_estimator
from utils import util
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
tf.flags.DEFINE_string(
'config_paths', '',
"""
Path to a YAML configuration files defining FLAG values. Multiple files
can be separated by the `#` symbol. Files are merged recursively. Setting
a key in these files is equivalent to setting the FLAG value with
the same name.
""")
tf.flags.DEFINE_string(
'model_params', '{}', 'YAML configuration string for the model parameters.')
tf.app.flags.DEFINE_string('master', 'local',
'BNS name of the TensorFlow master to use')
tf.app.flags.DEFINE_string(
'logdir', '/tmp/tcn', 'Directory where to write event logs.')
FLAGS = tf.app.flags.FLAGS
def main(_):
"""Runs main eval loop."""
# Parse config dict from yaml config files / command line flags.
logdir = FLAGS.logdir
config = util.ParseConfigsToLuaTable(FLAGS.config_paths, FLAGS.model_params)
# Choose an estimator based on training strategy.
estimator = get_estimator(config, logdir)
# Wait for the first checkpoint file to be written.
while not tf.train.latest_checkpoint(logdir):
tf.logging.info('Waiting for a checkpoint file...')
time.sleep(10)
# Run validation.
while True:
estimator.evaluate()
if __name__ == '__main__':
tf.app.run()