forked from DeanZeng/electricity_load_forecast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloadForecast.m
93 lines (83 loc) · 2.54 KB
/
loadForecast.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
function y = loadForecast(date, temperature, isHoliday)
% LOADFORECAST performs a day-ahead load forecast using a pre-trained
% Neural-Network or Bagged Regression Tree model
%
% USAGE:
% y = loadForecast(model, date, hour, temperature, isWorkingDay))
% Process inputs
date = datenum(date);
if date < 7e5 % Convert from Excel numeric date to MATLAB numeric date if necessary
date = x2mdate(date);
end
% Check if date is a holiday
if iscell(isHoliday)
isHoliday = isHoliday{1};
end
if ischar(isHoliday)
if strcmpi(isHoliday(1),'N')
isWorkingDay = true;
else
isWorkingDay = false;
end
else
isWorkingDay = ~isHoliday;
end
isWorkingDay = logical(isWorkingDay) & ~ismember(weekday(date),[1 7]);
% Import historical loads from the database
try
data = fetchDBLoadData(date-7, date-1);
catch ME %#ok<NASGU>
% Import historical loads from MAT file
s = load('Data\DBLoadData.mat');
data = s.data;
ind = data.NumDate >= date-7 & floor(data.NumDate) <= date-1;
data.Hour = data.Hour(ind);
data.DryBulb = data.DryBulb(ind);
data.DewPnt = data.DewPnt(ind);
data.SYSLoad = data.SYSLoad(ind);
data.NumDate = data.NumDate(ind);
end
if isempty(data.SYSLoad)
error('Not enough historical data for forecast.');
end
ave24 = filter(ones(24,1)/24, 1, data.SYSLoad);
loadPredictors = [data.SYSLoad(1:24) data.SYSLoad(end-23:end) ave24(end-23:end)];
% Create predictor matrix
% Drybulb, Dewpnt, Hour, Day, isWkDay, PrevWeek, PrevDay, Prev24
X = [temperature (1:24)' weekday(date)*ones(24,1) isWorkingDay*ones(24,1) loadPredictors];
% Load models
try
% Load from a location where updated models can be stored
model1 = load('C:\Temp\Forecaster\NNModel.mat');
model2 = load('C:\Temp\Forecaster\TreeModel.mat');
catch %#ok<CTCH>
model1 = load('Models\NNModel.mat');
model2 = load('Models\TreeModel.mat');
end
% Perform prediction
try
y1 = sim(model1.net, X')';
catch ME
% For debugging purposes if necessary
save C:\error.mat ME model1 model2
y1 = zeros(24,1);
end
y2 = predict(model2.model, X);
% Create load profile plot
fig = clf;
if isdeployed
set(fig,'Visible','off')
end
plot([y1 y2]/1e3, '.-');
xlabel('Hour');
ylabel('Load (x1000 MW)');
title(sprintf('Load Forecast Profile for %s', datestr(date)))
grid on;
legend('NeuralNet','BaggedTree','Location','best');
print -dmeta
y = [y1 y2];
%#function TreeBagger
%#function CompactTreeBagger
%#function network
%#function network\sim
%#function mae