-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_72_predict_from_neuH.py
42 lines (32 loc) · 1.74 KB
/
run_72_predict_from_neuH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import pandas as pd
# # LeiCA modules
from LeiCA_LIFE.learning.learning_predict_data_from_trained_model_wf import learning_predict_data_wf
from learning.learning_variables import in_data_name_list, subjects_selection_crit_dict, target_list
from variables import wd_root_path, ds_root_path
wd_root_path = "PATH"
ds_root_path = "PATH"
training='training_life_only'
subjects_selection_crit_names_list =['bothSexes_FD06']
working_dir = os.path.join(wd_root_path, 'wd_learning')
ds_dir = os.path.join(ds_root_path, 'learning_out_predict_all_from_neuH')
aggregated_subjects_dir = os.path.join("PATH", 'vectorized_aggregated_data')
trained_model_dir = "PATH"
use_n_procs = 50
plugin_name = 'MultiProc'
trained_model_template = {
'trained_model': 'learning_out/'+training+'/group_learning_prepare_data/{ana_stream}trained_model/' +
'_multimodal_in_data_name_{multimodal_in_data_name}/_selection_criterium_bothSexes_neuH_FD06/' +
'_target_name_{target_name}/trained_model.pkl'}
learning_predict_data_wf(working_dir=working_dir,
ds_dir=ds_dir,
trained_model_dir=trained_model_dir,
in_data_name_list=in_data_name_list,
subjects_selection_crit_dict=subjects_selection_crit_dict,
subjects_selection_crit_names_list=subjects_selection_crit_names_list,
aggregated_subjects_dir=aggregated_subjects_dir,
target_list=target_list,
trained_model_template=trained_model_template,
use_n_procs=use_n_procs,
plugin_name=plugin_name,
confound_regression=[False])