-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_83_stacking_predict_all_from_ncd_norm.py
47 lines (34 loc) · 2.45 KB
/
run_83_stacking_predict_all_from_ncd_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
from learning.learning_stacking_utils import stacking
date_str = '20160504'
target = 'age'
selection_crit_test = 'bothSexes_neuH_FD06'
in_data_path = "PATH"
selection_crit_nki = 'bothSexes_neuH_FD06'
life_subjects_selection_crit_list = ['bothSexes_neuH_FD06_ncd_norm']
for training in ['training_life_only']:
root_path_template = os.path.join(in_data_path,
'learning_out_predict_all_from_ncd_norm_' + date_str + '/' + training + '/{life_subjects_selection_crit}/pdfs/single_source_model_reg_{reg}_predicted')
out_path_template = os.path.join(in_data_path,
'learning_out_predict_all_from_ncd_norm_' + date_str + '/' + training + '/{life_subjects_selection_crit}/stacking/stacking_out_reg_{reg}')
rf_root_template = os.path.join(in_data_path,
'learning_out_ncd_norm_' + date_str + '/' + training + '/stacking/stacking_out_reg_{reg}')
for life_subjects_selection_crit in life_subjects_selection_crit_list:
rf_file_template = target + '__' + life_subjects_selection_crit + '__{stacking_crit}__stacking_fitted_model.pkl'
for reg in [False]:
root_path = root_path_template.format(reg=reg, life_subjects_selection_crit=life_subjects_selection_crit)
out_path = out_path_template.format(reg=reg, life_subjects_selection_crit=life_subjects_selection_crit)
file_pref = target + '__' + selection_crit_nki + '__'
source_dict = {
'aseg': os.path.join(root_path, file_pref + 'aseg_df_predicted.pkl'),
'ct': os.path.join(root_path, file_pref + 'lh_ct_fsav4_sm0__rh_ct_fsav4_sm0_df_predicted.pkl'),
'csa': os.path.join(root_path, file_pref + 'lh_csa_fsav4_sm0__rh_csa_fsav4_sm0_df_predicted.pkl'),
'basc197': os.path.join(root_path, file_pref + 'basc_197_df_predicted.pkl'),
'basc444': os.path.join(root_path, file_pref + 'basc_444_df_predicted.pkl'),
}
source_selection_dict = {'all': ['basc197', 'basc444', 'aseg', 'csa', 'ct'],
'rs': ['basc197', 'basc444'],
'fs': ['aseg', 'csa', 'ct'],
}
rf_file = os.path.join(rf_root_template.format(reg=reg), rf_file_template)
stacking(out_path, target, life_subjects_selection_crit, source_dict, source_selection_dict, rf=rf_file)