-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinitialize_kafka_topic.py
85 lines (76 loc) · 2.43 KB
/
initialize_kafka_topic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright 2022 The FeatHub Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from feathub.common import types
from feathub.feathub_client import FeathubClient
from feathub.feature_tables.sinks.kafka_sink import KafkaSink
from feathub.feature_tables.sources.file_system_source import FileSystemSource
from feathub.table.schema import Schema
if __name__ == "__main__":
if len(sys.argv) < 2:
raise RuntimeError("The input data path is missing.")
data_path = sys.argv[1]
client = FeathubClient(
props={
"processor": {
"type": "flink",
"flink": {
"master": "localhost:8081",
},
},
"online_store": {
"types": ["memory"],
"memory": {},
},
"registry": {
"type": "local",
"local": {
"namespace": "default",
},
},
"feature_service": {
"type": "local",
"local": {},
},
}
)
purchase_events_schema = (
Schema.new_builder()
.column("user_id", types.Int32)
.column("item_id", types.Int32)
.column("item_count", types.Int32)
.column("timestamp", types.Int32)
.build()
)
purchase_events_source = FileSystemSource(
name="purchase_events",
path=data_path,
data_format="json",
schema=purchase_events_schema,
timestamp_field="timestamp",
timestamp_format="epoch",
)
purchase_events_sink = KafkaSink(
bootstrap_server="kafka:9092",
topic="purchase_events",
key_format=None,
value_format="json",
)
job = client.materialize_features(
purchase_events_source,
purchase_events_sink,
allow_overwrite=True,
)
if data_path is not None:
job.wait()