-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinalg.py
executable file
·246 lines (201 loc) · 6.22 KB
/
linalg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from __future__ import division, print_function
from sys import platform as _platform
import matplotlib
if _platform == "linux" or _platform == "linux2":
matplotlib.use('Agg')
from graph_tool.all import *
import matplotlib.pylab as plt
import numpy as np
import networkx as nx
import scipy.linalg as lalg
import scipy.sparse.linalg as linalg
import scipy
import scipy.stats as stats
import pandas as pd
import vector as vc
import traceback
from scipy.sparse import lil_matrix, csr_matrix
from sklearn.preprocessing import normalize
from scipy.sparse.csgraph import connected_components
import datetime
def adj_matrix(G, nodelist):
A = nx.adjacency_matrix(G, nodelist)
A = A.todense()
A = np.asarray(A)
return np.transpose(A)
def deg_vector(A):
d = np.sum(A, axis=0)
d[d == 0] = 1
return d
def deg_matrix(A):
d = deg_vector(A)
D = np.diag(d)
return D
def laplacian_matrix(A, D):
return D - A
def transition_matrix(M):
n, n = M.shape
P = np.copy(M)
P /= P.sum(axis=1)
return P
def leading_eigenvector(M, symmetric=False, init_v=None, overwrite_a=False, tol=0, max_inc_tol_fac=0, k=1,
print_prefix='', dense_fallback=False, verbose=True):
if verbose:
print(print_prefix + 'largest eigenvec', end=' ')
k = min(k, M.shape[0] - 2)
if scipy.sparse.issparse(M):
if verbose:
print('sparse', end=' ')
if symmetric:
if verbose:
print('symmetric')
l, v = linalg.eigsh(M, k=k, which="LA")
else:
try:
if verbose:
print('asymmetric')
l, v = linalg.eigs(M, k=k, which="LR", v0=init_v, maxiter=max(M.shape[0], 1000), tol=tol)
except scipy.sparse.linalg.ArpackNoConvergence as e:
if dense_fallback:
if verbose:
print(print_prefix, 'sparse eigvec failed. retry dense.')
return leading_eigenvector(M.todense(), init_v=init_v, overwrite_a=overwrite_a, tol=tol,
max_inc_tol_fac=max_inc_tol_fac, k=k)
else:
raise e
l1 = l.real
u = v[:, 0].real
return l1, u / u.sum()
else:
if verbose:
print('dense', end='')
if symmetric:
if verbose:
print('symmetric')
l, v = lalg.eigh(M, overwrite_a=overwrite_a)
else:
if verbose:
print('asymmetric')
l, v = lalg.eig(M, overwrite_a=overwrite_a)
l1index = largest_eigenvalue_index(l)
u = np.array(v[:, l1index].real)
return l[l1index].real, u / u.sum()
def deg_matrix_inv(A):
d = deg_vector(A)
di = [1/float(a) for a in d]
Di = np.diag(di)
return Di
def rwalk_matrix(A, D):
Di = deg_matrix_inv(A)
P = np.dot(A, Di)
return P
def katz_alpha(A):
lm = lmax(A)
print("lmax%f" % lm)
alpha = (1 / lm) * 0.15
print("alpha%f" % alpha)
return alpha
def katz_matrix(A, alpha, norm=None):
m, n = A.shape
if norm is None:
norm = scipy.sparse.eye(n)
elif len(norm.shape) == 1:
norm = scipy.sparse.spdiags(norm, 0, A.shape[0], A.shape[0])
elif len(norm.shape) == 2:
# norm = norm
pass
else:
print('katz norm unknown shape'.center(120, '!'))
exit()
return norm - (alpha * A)
def largest_eigenvalue_index(l):
lreal = [a.real for a in l]
l1index = np.argmax(lreal)
return l1index
def calc_katz_iterative(A, alpha, max_iter=2000, filename='katz_range', out_dir='output/', plot=True, verbose=0):
if verbose > 0:
print('calc katz iterative')
print('alpha:', alpha)
sigma = np.identity(A.shape[0])
A_max, alphas = list(), list()
orig_A = A.copy()
orig_alpha = alpha
for i in range(1, max_iter):
if verbose > 1:
print('iter:', i)
if i > 1:
A *= orig_A
alpha *= orig_alpha
M = np.multiply(A, alpha)
sigma += M
A_max.append(M.max())
alphas.append(alpha)
if np.allclose(A_max[-1], 0):
if verbose > 0:
print('\tbreak after length:', i)
break
if plot:
df = pd.DataFrame(columns=['max matrix value'], data=A_max)
df['alpha'] = alphas
df.plot(secondary_y=['alpha'], alpha=0.75, lw=2, logx=True, logy=True)
plt.xlabel('path length')
plt.ylabel('value')
plt.savefig(out_dir + filename + '.png', bbox='tight')
plt.close('all')
return sigma
def lmax(M):
l,v = matrix_spectrum(M)
lmax = l[0].real
return lmax
def matrix_spectrum(M, sparse=True, k=1):
if sparse:
l, v = linalg.eigs(M, k=k, which="LR")
else:
l, v = lalg.eig(M)
return l, v
def row_vector(M, index):
x = M[index, :]
return x
def column_vector(M, index):
x = M[:, index]
return x
def number_of_links(A, undirected=True):
m = sum(sum(A))
if undirected:
return m / 2
else:
return m
def cosine_sim_matrix(A, undirected=True):
sigma = np.zeros(A.shape)
m, n = A.shape
for i in xrange(n):
x = nlinalg.row_vector(A, i)
for j in xrange(n):
y = nlinalg.row_vector(A, j)
sim = vc.cosine(x, y)
sigma[i][j] = sim
return sigma
def katz_sim_matrix(A, alpha):
katz = katz_matrix(A, alpha)
sigma = lalg.inv(katz)
return sigma
def modularity_matrix(A):
m = number_of_links(A)
Dp = degree_product_matrix(A)
Dp *= 0.5 / m
B = A - Dp
B_max = deg_matrix(A) - Dp
return B, B_max
def rw_entropy_rate(M):
n, n = M.shape
P = transition_matrix(M)
l, v = leading_eigenvector(P.T)
entropy = 0.
for i in range(n):
row_sum = sum(M[i, :])
if row_sum > 0:
entropy += v[i] * stats.entropy(P[i, :], base=2)
return entropy
def degree_product_matrix(A):
d = deg_vector(A)
return np.outer(d, d)