-
Notifications
You must be signed in to change notification settings - Fork 6
/
README.agda
65 lines (46 loc) · 1.88 KB
/
README.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
module README where
------------------------------------------------------------------------
-- Core definitions
------------------------------------------------------------------------
import Generics.Prelude
-- Generics.Telescope introduces an encoding for telescopes,
-- along with functions to manipulate indexed functions and families.
import Generics.Telescope
-- Generics.Desc introduces the core universe of descriptions for datatypes.
import Generics.Desc
import Generics.All
-- Generics.Accessibility introduces the accessibility predicate for datatypes.
import Generics.Accessibility
-- Generics.HasDesc defines the HasDesc record,
-- bridging the gap between descriptions of datatypes
-- and their concrete Agda counterpart.
import Generics.HasDesc
-- Generics.Reflection implements the deriveDesc macro
-- to automatically derive an instance of HasDesc for most datatypes.
import Generics.Reflection
------------------------------------------------------------------------
-- Generic constructions
------------------------------------------------------------------------
-- Generic show implemetation
import Generics.Constructions.Show
-- Datatype-generic case analysis principle
import Generics.Constructions.Case
-- Datatype-generic fold
import Generics.Constructions.Fold
-- Datatype-generic recursion
import Generics.Constructions.Recursion
-- Datatype-generic decidable equality
import Generics.Constructions.DecEq
-- Datatype-generic elimination principle
import Generics.Constructions.Elim
-- No Confusion principle
import Generics.Constructions.NoConfusion
-- Conversion to μ types
import Generics.Constructions.Mu
------------------------------------------------------------------------
-- Generic constructions on μ types
------------------------------------------------------------------------
import Generics.Mu
import Generics.Mu.All
import Generics.Mu.Elim
import Generics.Mu.Fold