-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkctm_building_transformation.py
108 lines (90 loc) · 3.34 KB
/
kctm_building_transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
import numpy.linalg as la
import csv
import pickle
from matplotlib import pyplot as plt
def import_data(path, global_shift, apply_global_shift=True):
data = []
with open(path, 'r') as f:
reader = csv.reader(f, delimiter=' ')
for idx, row in enumerate(reader):
if apply_global_shift:
data.append(np.array([float(row[2]) - global_shift['x'], float(row[1]) - global_shift['y'], # Donhwamun-ro: 1, 2 Sewoon: 2, 1
float(row[3]) - global_shift['z']]))
else:
data.append(np.array([float(row[2]), float(row[1]), float(row[3])]))
data = np.array(data)
return data
def fit_plane(data):
A = np.array([data[:, 1], data[:, 2], np.ones(data[:, 0].shape)]).T
y = np.array(data[:, 0], ndmin=2).T
xsi_hat = np.dot(la.inv(np.dot(A.T, A)), np.dot(A.T, y))
normal = np.array([1, - xsi_hat[0][0], - xsi_hat[1][0]])
normal = normal / la.norm(normal)
return normal
def compute_transformation(input_path, output_path, output_mat_path, global_shift):
# 데이터 가져오면서 global shift 적용하기
data = import_data(input_path, global_shift)
# 주어진 점을 가장 잘 포함하는 평면의 방정식 만들기 (plane fitting)
n = fit_plane(data)
# transformation_matrix_yxt = compute_translate_and_rotate_xy(n, global_shift)
# 서측
# k = np.cross(n, np.array([0, 0, 1]))
# k = k / la.norm(k)
#
# l = np.cross(k, n)
# l = l / la.norm(l)
# 동측
k = np.cross(n, np.array([0, 0, 1]))
k = - k / la.norm(k)
l = np.cross(k, n)
l = - l / la.norm(l)
rotation_matrix = np.array([k, l, n])
data_tranformed = np.dot(rotation_matrix, data.T).T
with open(output_path, 'w') as f:
for idx, row in enumerate(data_tranformed):
f.write('%d %f %f %f\n' % (idx + 1, row[0], row[1], row[2]))
with open(output_mat_path, 'wb') as f:
transformation_info = {
'global_shift': global_shift,
'rotation_matrix': rotation_matrix
}
pickle.dump(transformation_info, f)
return data_tranformed, rotation_matrix
if __name__ == '__main__':
# global_shift = {
# 'x': 199560.039,
# 'y': 552246.931,
# 'z': 56.700
# }
# data_transformed_west, rotation_matrix_west = compute_transformation(
# 'data/sewoon_west_excluded.txt',
# 'data/sewoon_west_excluded_transformed.txt',
# 'data/sewoon_west_excluded_transform_mat.pickle',
# global_shift
# )
global_shift = {
'x': 199598.891,
'y': 552145.686,
'z': 57.046
}
data_transformed_east, rotation_matrix_east = compute_transformation(
'data/sewoon_east_excluded.txt',
'data/sewoon_east_excluded_transformed.txt',
'data/sewoon_east_excluded_transform_mat.pickle',
global_shift
)
# global_shift = {
# 'x': 199341.820626,
# 'y': 552199.462439,
# 'z': 72.206208
# }
# data_transformed_east, rotation_matrix_east = compute_transformation(
# 'data/donhwamun-ro_chunk_1.txt',
# 'data/donhwamun-ro_chunk_1_transformed.txt',
# 'data/donhwamun-ro_chunk_1_transform_mat.pickle',
# global_shift
# )
# plt.figure()
# plt.boxplot(data_transformed_east.T[2])
# plt.show()