-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain-tinyRSNN.py
260 lines (198 loc) · 9.04 KB
/
train-tinyRSNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Trains `tinyRSNN` model on all sessions of both monkeys.
# # # # # # # # #
# Pretraining is switched on by default and performed on all sessions of each monkey.
# If pretraining should be limited to the three sessions used in the challenge, run with data.pretrain_filenames=challenge-data
# CONFIG
from omegaconf import DictConfig
import hydra
from hydra.utils import to_absolute_path
import os
from pathlib import Path
# NUMERIC
from challenge import get_model, train_validate_model, evaluate_model, configure_model, prune_retrain_model_iterate
from challenge import get_dataloader
from challenge.utils import save_model_state, load_model_state
from challenge.utils.plotting import plot_training, plot_cumulative_mse
from challenge.utils.misc import convert_np_float_to_float
import torch
import numpy as np
# LOGGING
import logging
import time
import json
# SET UP LOGGER
logging.basicConfig()
logger = logging.getLogger("train-tinyRSNN")
@hydra.main(config_path="conf", config_name="train-tinyRSNN", version_base="1.1")
def train_all(cfg: DictConfig) -> None:
logger.info("Starting new simulation...")
# SETUP
# # # # # # # # #
# convert dtype string to torch dtype
dtype = getattr(torch, cfg.dtype)
# SETTING RANDOM SEED
# # # # # # # # #
if cfg.seed:
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
if torch.cuda.is_available and 'cuda' in cfg.device:
torch.cuda.manual_seed(cfg.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(cfg.seed)
# Get dataloader
dataloader = get_dataloader(cfg, dtype=dtype)
# # # # # # # # #
for monkey_name in cfg.train_monkeys:
nb_inputs = cfg.data.nb_inputs[monkey_name]
# PRETRAINING OR LOADING STATE DICT
# # # # # # # # # # #
if cfg.pretraining:
filenames = list(cfg.data.pretrain_filenames[monkey_name].values())
# GET MODEL
# # # # # # # # #
logger.info("Constructing model for " + monkey_name + " pretraining...")
pretrain_dat, pretrain_val_dat, _ = dataloader.get_multiple_sessions_data(
filenames
)
model = get_model(cfg, nb_inputs=nb_inputs, dtype=dtype, data=pretrain_dat)
logger.info("Configuring model...")
model = configure_model(model, cfg, pretrain_dat, dtype)
logger.info("Pretraining on all {} sessions...".format(monkey_name))
model, history = train_validate_model(
model,
cfg,
pretrain_dat,
pretrain_val_dat,
cfg.training.nb_epochs_pretrain,
verbose=cfg.training.verbose,
snapshot_prefix="tinyRSNN_pretrain_" + monkey_name + "_",
)
results = {}
for k, v in history.items():
if "val" in k:
results[k] = v.tolist()
else:
results["train_" + k] = v.tolist()
logger.info("Pretraining complete.")
# Save to JSON file with indentation
converted_results = convert_np_float_to_float(results)
with open("tinyRSNN-results-pretraining-" + monkey_name + ".json", "w") as f:
json.dump(converted_results, f, indent=4)
# Save pretrained model state
save_model_state(model, "tinyRSNN-pretrained-" + monkey_name + ".pth")
pretrained_model = model.state_dict()
elif cfg.load_state[monkey_name]:
logger.info("Loading pretrained model for " + monkey_name)
pretrained_model = load_model_state(cfg.load_state[monkey_name])
logger.info("Model state loaded.")
else:
logger.info("No pretraining or model state loaded.")
pretrained_model = None
# TRAINING & EVALUATION
# # # # # # # # #
for session_name, filename in cfg.data.filenames[monkey_name].items():
logger.info("=" * 50)
logger.info("Constructing model for " + session_name + "...")
logger.info("=" * 50)
train_dat, val_dat, test_dat = dataloader.get_single_session_data(filename)
model = get_model(cfg, nb_inputs=nb_inputs, dtype=dtype, data=train_dat)
logger.info("Configuring model...")
model = configure_model(model, cfg, train_dat, dtype)
# Load pretrained model state
if pretrained_model is not None:
model.load_state_dict(pretrained_model)
logger.info("Pretrained model state loaded.")
logger.info("Training on " + session_name + "...")
model, history = train_validate_model(
model,
cfg,
train_dat,
val_dat,
cfg.training.nb_epochs_train,
verbose=cfg.training.verbose,
snapshot_prefix="tinyRSNN_" + session_name + "_",
)
results = {}
for k, v in history.items():
if "val" in k:
results[k] = v.tolist()
else:
results["train_" + k] = v.tolist()
logger.info("Training complete.")
# SAVE MODEL STATE
# # # # # # # # #
# Local save in hydra run directory
save_model_state(model, "tinyRSNN-" + session_name + ".pth")
# PRUNING
# # # # # # # # #
if cfg.training.is_prune:
model = prune_retrain_model_iterate(
model,
cfg,
train_dat,
val_dat,
logger,
history['r2'][-1],
history['val_r2'][-1],
nb_epochs_retrain=cfg.training.nb_epochs_retrain,
prune_percentage_start=cfg.training.prune_percentage_start,
tolerance=cfg.training.tolerance,
prune_precision=cfg.training.prune_precision,
max_prune_percentage=cfg.training.max_prune_percentage,
is_plot_pruning=cfg.training.is_plot_pruning,
is_pruning_ver=cfg.training.is_pruning_ver,
session_name=session_name,
pruning_plot_prefix=session_name
)
# SAVE MODEL STATE
# # # # # # # # #
# Save pruned model state
save_model_state(model, "tinyRSNN-" + session_name + " pruned.pth")
if cfg.model.is_half:
model = model.half()
# Save pruned model state
if cfg.training.is_prune:
save_model_state(model, "tinyRSNN-" + session_name + " pruned half.pth")
else:
save_model_state(model, "tinyRSNN-" + session_name + " half.pth")
logger.info("Model converted to half precision.")
test_dat.dtype = torch.float16
logger.info("Test data converted to half precision.")
# If seed is set, save model state as 'models / {session_name} / tinyRSNN-{seed}.pth'
if cfg.seed:
path = Path(to_absolute_path('models')) / session_name
path.mkdir(parents=True, exist_ok=True)
filepath = path / ("tinyRSNN-" + str(cfg.seed) + ".pth")
save_model_state(model, filepath)
logger.info("Saved model state.")
# EVALUATE MODEL
# # # # # # # # #
logger.info("Evaluating model...")
if cfg.plotting.plot_cumulative_mse:
fig, ax = plot_cumulative_mse(
model, val_dat, save_path="tinyRSNN_cumulative_se_" + session_name + ".png"
)
model, scores, pred, bm_results = evaluate_model(model, cfg, test_dat)
logger.info("Benchmark results:")
for k, v in bm_results.items():
# log key and value rounded to 4 decimal places
if isinstance(v, float):
logger.info(f"{k}: {v:.4f}")
else:
logger.info(f"{k}: {v}")
for k, v in model.get_metrics_dict(scores).items():
results["test_" + k] = v
# Save to JSON file with indentation
converted_results = convert_np_float_to_float(results)
with open("tinyRSNN-results-" + session_name + ".json", "w") as f:
json.dump(converted_results, f, indent=4)
if cfg.plotting.plot_training:
fig, ax = plot_training(
results,
cfg.training.nb_epochs_train,
names=["loss", "r2"],
save_path="tinyRSNN_training_" + session_name + ".png",
)
if __name__ == "__main__":
train_all()