-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
241 lines (189 loc) · 6.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import random
import threading
import numpy as np
import argparse
import tensorflow as tf
import tensorflow.keras.backend as K
from rl.utils import flags
from rl.utils.utils import ModeKeys
from rl.utils.lr_schemes import update_learning_rate
from rl.envs.registry import get_env
from rl.utils.checkpoint import Checkpoint
from rl.utils.logger import init_logger, log_scalar, log_graph
from rl.hparams.registry import get_hparams
from rl.agents.registry import get_agent
def init_flags():
parser = argparse.ArgumentParser()
parser.add_argument(
"--hparams", required=True, type=str, help="Which hparams to use.")
parser.add_argument(
"--sys",
required=True,
type=str,
choices=['local', 'gcp', 'tpu'],
help="Which system environment to use.")
parser.add_argument("--env", default="", help="Which RL environment to use.")
parser.add_argument(
"--hparam_override",
default="",
type=str,
help="Run-specific hparam settings to use.")
parser.add_argument(
"--output_dir", required=True, type=str, help="The output directory.")
parser.add_argument(
"--train_steps",
default=2000000,
type=int,
help="Number of steps to train the agent.")
parser.add_argument(
"--eval_episodes",
default=10,
type=int,
help="Number of episodes to evaluate the agent.")
parser.add_argument(
"--test_episodes",
default=10,
type=int,
help="Number of episodes to test the agent.")
parser.add_argument(
"--test_only", action="store_true", help="Test agent without training.")
parser.add_argument(
"--copies", default=1, type=int, help="Which hparams to use.")
parser.add_argument("--render", action="store_true", help="Render game play.")
parser.add_argument(
"--record_video", action="store_true", help="Record game play.")
parser.add_argument(
"--num_workers", default=1, type=int, help="Number of workers.")
FLAGS = parser.parse_args()
return FLAGS
def init_random_seeds(hparams):
tf.set_random_seed(hparams.seed)
random.seed(hparams.seed)
np.random.seed(hparams.seed)
def init_hparams(FLAGS):
tf.reset_default_graph()
hparams = get_hparams(FLAGS.hparams)
hparams = hparams.parse(FLAGS.hparam_override)
hparams = flags.update_hparams(FLAGS, hparams)
return hparams
def init_agent(sess, hparams):
# initialize environment to update hparams
env = get_env(hparams)
env.close()
agent = get_agent(sess, hparams)
checkpoint = Checkpoint(sess, hparams)
return agent, checkpoint
def log_start_of_run(FLAGS, hparams, run):
print("\n-----------------------------------------\n"
"BEGINNING RUN #%s:\n"
"\t hparams: %s\n"
"\t env: %s\n"
"\t agent: %s\n"
"\t num_workers: %d\n"
"\t output_dir: %s\n"
"-----------------------------------------\n" %
(run, FLAGS.hparams, hparams.env, hparams.agent, hparams.num_workers,
hparams.output_dir))
hparams.run_output_dir = os.path.join(hparams.output_dir, 'run_%d' % run)
init_logger(hparams)
def step(hparams, agent, state, env, worker_id):
""" run envrionment for one step and return the output """
if hparams.render:
env.render()
action = agent.act(state, worker_id)
state, reward, done, _ = env.step(action)
if done:
state = env.reset()
return action, reward, done, state
def train(worker_id, agent, hparams, checkpoint):
env = get_env(hparams)
eval_env = get_env(hparams)
state = env.reset()
while hparams.global_step < hparams.train_steps:
hparams.mode[worker_id] = ModeKeys.TRAIN
last_state = state
action, reward, done, state = step(hparams, agent, last_state, env,
worker_id)
agent.observe(last_state, action, reward, done, state, worker_id)
if done:
hparams.local_episode[worker_id] += 1
log_scalar('episodes/worker_%d' % worker_id,
hparams.local_episode[worker_id])
hparams.global_step += 1
hparams.total_step += 1
hparams.local_step[worker_id] += 1
update_learning_rate(hparams)
if hparams.local_step[worker_id] % hparams.eval_interval == 0:
agent.reset(worker_id)
evaluate(worker_id, agent, eval_env, hparams)
if worker_id == 0:
checkpoint.save()
agent.reset(worker_id)
env.close()
eval_env.close()
def evaluate(worker_id, agent, env, hparams):
hparams.mode[worker_id] = ModeKeys.EVAL
rewards = []
for i in range(hparams.eval_episodes):
state = env.reset()
done = False
episode_reward = 0
while not done:
last_state = state
action, reward, done, state = step(
hparams, agent, last_state, env, worker_id=worker_id)
episode_reward += reward
hparams.total_step += 1
rewards.append(episode_reward)
log_scalar('rewards/worker_%d' % worker_id, np.mean(rewards))
log_scalar('rewards_std/worker_%d' % worker_id, np.std(rewards))
def test(hparams, agent):
hparams.mode[0] = ModeKeys.TEST
env = get_env(hparams)
for i in range(hparams.test_episodes):
state = env.reset()
done = False
episode_reward = 0
while not done:
if hparams.render:
env.render()
last_state = state
action, reward, done, state = step(
hparams, agent, last_state, env, worker_id=0)
episode_reward += reward
print("episode %d\trewards %d" % (i, episode_reward))
def _run(FLAGS):
hparams = init_hparams(FLAGS)
init_random_seeds(hparams)
for run in range(hparams.copies):
log_start_of_run(FLAGS, hparams, run)
with tf.Session() as sess:
K.set_session(sess)
agent, checkpoint = init_agent(sess, hparams)
restored = checkpoint.restore()
if not restored:
sess.run(tf.global_variables_initializer())
if not hparams.test_only:
log_graph()
agent.clone_weights()
if hparams.num_workers == 1:
train(0, agent, hparams, checkpoint)
else:
workers = [
threading.Thread(
target=train, args=(worker_id, agent, hparams, checkpoint))
for worker_id in range(hparams.num_workers)
]
for worker in workers:
worker.start()
for worker in workers:
worker.join()
else:
test(hparams, agent)
hparams = init_hparams(FLAGS)
def main():
FLAGS = init_flags()
_run(FLAGS)
if __name__ == "__main__":
main()