forked from jibsen/galib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex26.C
434 lines (373 loc) · 12.4 KB
/
ex26.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/* ----------------------------------------------------------------------------
ex26.C
mbwall 24mar96
Copyright (c) 1995-1996 Massachusetts Institute of Technology
The code for this example is adapted from an original implementation
by Thomas Grueninger (from Uni Stuttgart, visiting scholar at MIT)
DESCRIPTION:
GAs are lousy at solving the travelling salesperson problem. But here is an
example of how to do it anyway. In this case we use a steady-state genetic
algorithm and give you the compile-time choice of partial match or edge
recombination crossover.
This one looks really good when you draw an entire population of individuals
and watch them all evolve in real time. It becomes very obvious what the
genetic algorithm is doing and how well the speciation is working (or not).
This implementation is by no means efficient, so please do not complain
about all of the silly little inefficient aspects of the implementation. But
it does get the job done.
---------------------------------------------------------------------------- */
#include <math.h>
#include <ga/GASStateGA.h>
#include <ga/GAListGenome.h>
#include <ga/garandom.h>
#include <ga/std_stream.h>
#define cout STD_COUT
#define cerr STD_CERR
#define endl STD_ENDL
#define ostream STD_OSTREAM
#define ifstream STD_IFSTREAM
// Set this up for your favorite TSP. The sample one is a contrived problem
// with the towns laid out in a grid (so it is easy to figure out what the
// shortest distance is, and there are many different paths with the same
// shortest path). File format is that used by the TSPLIB problems. You can
// grab more problems from
//
//
// Apologies for using fixed-length arrays. But this is an example, not
// production code ;)
#define MAX_TOWNS 50
#define TSP_FILE "tsp_rect_20.txt"
float DISTANCE[MAX_TOWNS][MAX_TOWNS];
double x[MAX_TOWNS],y[MAX_TOWNS];
int ntowns = 0;
// You can use either edge recombination crossover or partial match crossover.
// Which one you select makes a HUGE difference in the performance of the
// genetic algorithm. Only one of the two following lines should be commented.
//#define XOVER PMXover // (Partial Match Crossover)
#define XOVER ERXover // (Edge Recombination Crossover)
float Objective(GAGenome&);
int Mutator(GAGenome&, float);
void Initializer(GAGenome&);
float Comparator(const GAGenome&, const GAGenome&);
int ERXover(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*);
int PMXover(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*);
void ERXOneChild(const GAGenome&, const GAGenome&, GAGenome*);
int
main(int argc, char** argv) {
cout << "Example 26\n\n";
cout << "The Travelling Salesman Problem (TSP) demo program.\n" << endl;
// See if we've been given a seed to use (for testing purposes). When you
// specify a random seed, the evolution will be exactly the same each time
// you use that seed number.
unsigned int seed = 0;
for(int ii=1; ii<argc; ii++) {
if(strcmp(argv[ii++],"seed") == 0) {
seed = atoi(argv[ii]);
}
}
double dump;
ifstream in(TSP_FILE);
if(!in) {
cerr << "could not read data file " << TSP_FILE << "\n";
exit(1);
}
ntowns=0;
do {
in >> dump;
in >> x[ntowns];
in >> y[ntowns];
ntowns++;
} while(!in.eof() && ntowns < MAX_TOWNS);
in.close();
if(ntowns >= MAX_TOWNS) {
cerr << "data file contains more towns than allowed for in the fixed\n";
cerr << "arrays. Recompile the program with larger arrays or try a\n";
cerr << "smaller problem.\n";
exit(1);
}
double dx,dy;
for(int i=0;i<ntowns;i++) {
for(int j=i; j<ntowns;j++) {
dx=x[i]-x[j]; dy=y[i]-y[j];
DISTANCE[j][i]=DISTANCE[i][j]=sqrt(dx*dx+dy*dy);
}
}
GAListGenome<int> genome(Objective);
genome.initializer(::Initializer);
genome.mutator(::Mutator);
genome.comparator(::Comparator);
genome.crossover(XOVER);
GASteadyStateGA ga(genome);
ga.minimize();
ga.pReplacement(1.0);
ga.populationSize(100);
ga.nGenerations(1000);
ga.pMutation(0.1);
ga.pCrossover(1.0);
ga.selectScores(GAStatistics::AllScores);
ga.parameters(argc, argv);
cout << "initializing..."; cout.flush();
ga.initialize(seed);
cout << "evolving..."; cout.flush();
while(!ga.done()) {
ga.step();
if(ga.generation() % 10 == 0) {
cout << ga.generation() << " "; cout.flush();
}
}
genome = ga.statistics().bestIndividual();
cout << "the shortest path found is " << genome.score() << "\n";
cout << "this is the distance from the sequence\n";
cout << genome << "\n\n";
cout << ga.statistics() << "\n";
return 0;
}
// Here are the genome operators that we want to use for this problem.
// Thanks to Jan Kees IJspeert for isolating an order-of-evaluation problem
// in the previous implementation of this function.
float
Objective(GAGenome& g) {
GAListGenome<int> & genome = (GAListGenome<int> &)g;
float dist = 0;
if(genome.head()) {
for(int i=0; i<ntowns; i++) {
int xx = *genome.current();
int yy = *genome.next();
dist += DISTANCE[xx][yy];
}
}
return dist;
}
void
Initializer(GAGenome& g) {
GAListGenome<int> &child=(GAListGenome<int> &)g;
while(child.head()) child.destroy(); // destroy any pre-existing list
int i,town;
static int visit[MAX_TOWNS];
memset(visit, 0, MAX_TOWNS*sizeof(int));
town=GARandomInt(0,ntowns-1);
visit[town]=1;
child.insert(town,GAListBASE::HEAD); // the head node
for( i=1; i<ntowns; i++) {
do {
town=GARandomInt(0,ntowns-1);
} while (visit[town]);
visit[town]=1;
child.insert(town);
} // each subsequent node
}
int
Mutator(GAGenome& g, float pmut) {
GAListGenome<int> &child=(GAListGenome<int> &)g;
register int n, i;
if ((GARandomFloat() >= pmut) || (pmut <= 0)) return 0;
n = child.size();
if (GARandomFloat()<0.5) {
child.swap(GARandomInt(0,n-1),GARandomInt(0,n-1)); // swap only one time
}
else {
int nNodes = GARandomInt(1,((int)(n/2-1))); // displace nNodes
child.warp(GARandomInt(0,n-1)); // with or without
GAList<int> TmpList; // inversion
for(i=0;i<nNodes;i++) {
int *iptr = child.remove();
TmpList.insert(*iptr,GAListBASE::AFTER);
delete iptr;
child.next();
}
int invert;
child.warp(GARandomInt(0,n-nNodes));
invert = (GARandomFloat()<0.5) ? 0 : 1;
if (invert) TmpList.head(); else TmpList.tail();
for(i=0;i<nNodes;i++) {
int *iptr = TmpList.remove();
child.insert(*iptr,GAListBASE::AFTER);
delete iptr;
if (invert) TmpList.prev(); else TmpList.next();
}
}
child.head(); // set iterator to root node
return (1);
}
int
ERXover(const GAGenome& g1, const GAGenome& g2, GAGenome* c1, GAGenome* c2) {
int nc=0;
if(c1) { ERXOneChild(g1,g2,c1); nc+=1; }
if(c2) { ERXOneChild(g1,g2,c2); nc+=1; }
return nc;
}
void
ERXOneChild(const GAGenome& g1, const GAGenome& g2, GAGenome* c1) {
GAListGenome<int> &mate1=(GAListGenome<int> &)g1;
GAListGenome<int> &mate2=(GAListGenome<int> &)g2;
GAListGenome<int> &sis=(GAListGenome<int> &)*c1;
int i,j,k,t1,t2,town;
static char CM[MAX_TOWNS][MAX_TOWNS],visit[MAX_TOWNS];
memset(CM, 0, MAX_TOWNS*MAX_TOWNS*sizeof(char));
memset(visit, 0, MAX_TOWNS*sizeof(char));
while (sis.head()) sis.destroy();
// create connection matrix
mate1.head();
for(j=0; j<ntowns; j++) {
t1 = *mate1.current(); t2 = *mate1.next();
CM[t1][t2]=1; CM[t2][t1]=1;
}
mate2.head();
for(j=0; j<ntowns; j++) {
t1 = *mate2.current(); t2 = *mate2.next();
CM[t1][t2]=1; CM[t2][t1]=1;
}
// select 1st town randomly
town=GARandomInt(0,ntowns-1);
visit[town]=1; memset(CM[town], 0, MAX_TOWNS*sizeof(char));
sis.insert(town); // the head node
GAList<int> PossFollowList;
GAList<int> FollowersList[5];
while (PossFollowList.head()) PossFollowList.destroy();
for(k=0; k<5; k++) {
while (FollowersList[k].head()) FollowersList[k].destroy();
}
// select the following town with the minimal no of next folling towns
int nPoss,nFollow;
for(i=1; i<ntowns; i++) {
nPoss = 0;
for(j=0; j<ntowns; j++) { // no of poss. following towns
if (CM[j][town]) {
nPoss += 1;
PossFollowList.insert(j);}
}
// nPoss = 0;
if (nPoss == 0) {
do {town=GARandomInt(0,ntowns-1);} while (visit[town]); // no follower
visit[town]=1; memset(CM[town], 0, MAX_TOWNS*sizeof(char));
sis.insert(town);
}
else {
PossFollowList.head();
for(j=0; j<nPoss; j++) {
nFollow = 0;
town = (*PossFollowList.current());
for(k=0; k<ntowns; k++) {
if (CM[k][town]) nFollow++;
}
FollowersList[nFollow].insert(town);
PossFollowList.next();
}
k=0;
while (FollowersList[k].size() == 0) k++;
FollowersList[k].warp(GARandomInt(0,FollowersList[k].size()));
town = (*FollowersList[k].current());
visit[town]=1; memset(CM[town], 0, MAX_TOWNS*sizeof(char));
sis.insert(town);
}
while (PossFollowList.head()) PossFollowList.destroy();
for(k=0; k<5; k++) {
while (FollowersList[k].head()) FollowersList[k].destroy();
}
}
sis.head(); // set iterator to head of list
}
int
PMXover(const GAGenome& g1, const GAGenome& g2, GAGenome* c1, GAGenome* c2) {
GAListGenome<int> &mom=(GAListGenome<int> &)g1;
GAListGenome<int> &dad=(GAListGenome<int> &)g2;
int a = GARandomInt(0, mom.size());
int b = GARandomInt(0, dad.size());
int h;
if (b<a) { h=a; a=b; b=h; }
int* index;
int i,j,nc=0;
if(c1) {
GAListGenome<int> &sis=(GAListGenome<int> &)*c1;
sis.GAList<int>::copy(mom);
GAListIter<int> diter(dad);
index = diter.warp(a);
for(i=a; i<b; i++, index=diter.next()){
if(*sis.head() == *index){
sis.swap(i,0);
}
else{
for(j=1; (j<sis.size()) && (*sis.next() != *index); j++);
sis.swap(i,j); // no op if j>size
}
}
sis.head(); // set iterator to head of list
nc += 1;
}
if(c2) {
GAListGenome<int> &sis=(GAListGenome<int> &)*c2;
sis.GAList<int>::copy(mom);
GAListIter<int> diter(dad);
index = diter.warp(a);
for(i=a; i<b; i++, index=diter.next()){
if(*sis.head() == *index){
sis.swap(i,0);
}
else{
for(j=1; (j<sis.size()) && (*sis.next() != *index); j++);
sis.swap(i,j); // no op if j>size
}
}
sis.head(); // set iterator to head of list
nc += 1;
}
return nc;
}
float
Comparator(const GAGenome& g1, const GAGenome& g2) {
GAListGenome<int> &a = (GAListGenome<int> &)g1;
GAListGenome<int> &b = (GAListGenome<int> &)g2;
int i,j,t1,t2;
float dist=ntowns;
static char CM1[MAX_TOWNS][MAX_TOWNS],CM2[MAX_TOWNS][MAX_TOWNS];
memset(CM1, 0, MAX_TOWNS*MAX_TOWNS*sizeof(char));
memset(CM2, 0, MAX_TOWNS*MAX_TOWNS*sizeof(char));
// create connection matrix CM1
a.head();
for(i=0; i<ntowns; i++) {
t1 = *a.current(); t2 = *a.next();
CM1[t1][t2]=1; CM1[t2][t1]=1;
}
// create connection matrix CM2
b.head();
for(i=0; i<ntowns; i++) {
t1 = *b.current(); t2 = *b.next();
CM2[t1][t2]=1; CM2[t2][t1]=1;
}
//calc distance = how many edges are different
for (i=0; i<ntowns; i++) {
for (j=i; j<ntowns; j++) {
if (CM1[i][j]&CM2[i][j]) dist--;
}
}
return (dist);
}
// Here we override the _write method for the List class. This lets us see
// exactly what we want (the default _write method dumps out pointers to the
// data rather than the data contents).
// This routine prints out the contents of each element of the list,
// separated by a space. It does not put a newline at the end of the list.
// Notice that you can override ANY function of a template class. This is
// called "specialization" in C++ and it lets you tailor the behaviour of a
// template class to better fit the type.
template <> int
GAListGenome<int>::write(ostream & os) const
{
int *cur, *head;
GAListIter<int> tmpiter(*this);
if((head=tmpiter.head()) != 0) {
os << *head << " ";
for(cur=tmpiter.next(); cur && cur != head; cur=tmpiter.next())
os << *cur << " ";
}
return os.fail() ? 1 : 0;
}
// force instantiations for compilers that do not do auto instantiation
// for some compilers (e.g. metrowerks) this must come after any
// specializations or you will get 'multiply-defined errors when you compile.
#if !defined(GALIB_USE_AUTO_INST)
#include <ga/GAList.C>
#include <ga/GAListGenome.C>
GALIB_INSTANTIATION_PREFIX GAList<int>;
GALIB_INSTANTIATION_PREFIX GAListGenome<int>;
#endif