-
Notifications
You must be signed in to change notification settings - Fork 0
/
SEQ_INTERPRETER.py
754 lines (626 loc) · 27.3 KB
/
SEQ_INTERPRETER.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
import argparse
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.optimize import minimize
import math
from scipy.stats import binom as binom
from smoothing import dataframe_smoothing
class SEIR():
def __init__(self):
# ========================================== #
# Model parameters
# ========================================== #
self.beta = 0.4 # Contamination rate
self.sigma = 0.9 # Incubation rate
self.gamma = 0.1 # Recovery rate
self.hp = 0.05 # Hospit rate
self.hcr = 0.2 # Hospit recovery rate
self.pc = 0.1 # Critical rate
self.pd = 0.1 # Critical recovery rate
self.pcr = 0.3 # Critical mortality
# Testing protocol
self.s = 0.77 # Sensitivity
self.t = 0.7 # Testing rate in symptomatical
# Learning set
self.dataframe = None
self.dataset = None
# Initial state
self.I_0 = 2 # Infected
self.E_0 = 3 # Exposed
self.R_0 = 0 # Recovered
self.S_0 = 1000000 - self.I_0 - self.E_0 # Sensible
self.H_0 = 0
self.C_0 = 0
self.D_0 = 0
self.CT_0 = self.I_0 # Contamined
# ========================================== #
# Hyperparameters dashboard:
# ========================================== #
# Importance given to each curve during the fitting process
self.w_1 = 1 # on test rate
self.w_2 = 1 # Weight of positive test
self.w_3 = 1 # Weight of cumul hospit data
self.w_4 = 1
self.w_5 = 1
self.w_6 = 1
# Value to return if log(binom.pmf(k,n,p)) = - infinity
self.overflow = - 200
# Smoothing data or not
self.smoothing = True
# Binomial smoother: ex: if = 2: predicted value *= 2 and p /= 2 WARNING: only use integer
self.binom_smoother_A = 2
self.binom_smoother_B = 4
self.binom_smoother_C = 4
# Binomial smoother use for model scoring:
self.b_s_score = 2
# Optimizer step size
self.opti_step = 0.0001
# Optimizer constraints
self.beta_min = 0.1
self.beta_max = 0.8
self.sigma_min = 1/5
self.sigma_max = 1
self.gamma_min = 1/10
self.gamma_max = 1/4
self.hp_min = 0.01
self.hp_max = 0.5
self.hcr_min = 0.01
self.hcr_max = 0.4
self.pc_min = 0.01
self.pc_max = 0.4
self.pd_min = 0.01
self.pd_max = 0.5
self.pcr_min = 0.01
self.pcr_max = 0.4
self.s_min = 0.7
self.s_max = 0.85
self.t_min = 0.5
self.t_max = 1
# Optimizer choise: COBYLA LBFGSB ou AUTO
self.optimizer = 'LBFGSB'
# ========================================== #
# Printers
# ========================================== #
self.fit_step_1_details = True
def get_parameters(self):
prm = (self.beta, self.sigma, self.gamma, self.hp, self.hcr, self.pc, self.pd, self.pcr, self.s, self.t)
return prm
def get_hyper_parameters(self):
hprm = (self.w_1, self.w_2, self.w_3, self.w_4, self.w_5, self.w_6, self.binom_smoother, self.opti_step, self.optimizer, self.smoothing)
return hprm
def get_initial_state(self, sensib=None, test_rate=None, sigma=None, t_0=0):
"""
Generate an initial state for the model from the dataset
according to the sensitivity and the testing rate to
estimate the true value of the initial state
:param sensib: Sensibility value to use. Use class value if None
:param test_rate: Testing rate value to use. Use class value if None
:return: An array
"""
if sensib is None:
s = self.s
else:
s = sensib
if test_rate is None:
t = self.t
else:
t = test_rate
if sigma is None:
sig = self.sigma
else:
sig = sigma
I_0 = np.round(self.dataset[t_0][1] / (s * t))
H_0 = self.dataset[t_0][3]
E_0 = np.around((self.dataset[1][1] - self.dataset[0][1]) / sig)
D_0 = 0
C_0 = 0
S_0 = 1000000 - I_0 - H_0 - E_0
R_0 = 0
dE_to_I_0 = np.around(self.dataset[0][1])
dI_to_H_0 = H_0
dI_to_R_0 = 0
init = (S_0, E_0, I_0, R_0, H_0, C_0, D_0, dE_to_I_0, dI_to_H_0, dI_to_R_0)
return init
def differential(self, state, time, beta, sigma, gamma, hp, hcr, pc, pd, pcr, s, t):
"""
ODE who describe the evolution of the model with the time
:param state: An initial state to use
:param time: A time vector
:return: the evolution of the number of person in each compartiment + cumulative testing rate
+ cumulative entry in hospital
"""
S, E, I, R, H, C, D, E_to_I, I_to_H, I_to_R = state
dS = -(beta * S * I) / (S + I + E + R + H + C + D)
dE = ((beta * S * I) / (S + I + E + R + H + C + D)) - (sigma * E)
dI = (sigma * E) - (gamma * I) - (hp * I)
dH = (hp * I) - (hcr * H) - (pc * H)
dC = (pc * H) - (pd * C) - (pcr * C)
dD = (pd * C)
dR = (gamma * I) + (hcr * H) + (pcr * C)
dE_to_I = sigma * E
dI_to_H = hp * I
dI_to_R = gamma * I
return dS, dE, dI, dR, dH, dC, dD, dE_to_I, dI_to_H, dI_to_R
def predict(self, duration, initial_state=None, parameters=None):
"""
Predict the evolution of the epidemic during the selected duration from a given initial state
and given parameters
:param duration: Use positive integer value
:param initial_state: Default = use self.get_initial_state()
:param parameters: Default = use self.get_parameters()
:return: a numpy array of 8 columns and t rows
"""
# Time vector:
time = np.arange(duration)
# Parameters to use
prm = parameters
if prm is None:
prm = self.get_parameters()
# Initial state to use:
init = initial_state
if init is None:
init = self.get_initial_state(sensib=prm[8], test_rate=prm[9], sigma=prm[1])
# Make prediction:
predict = odeint(func=self.differential,
y0=init,
t=time,
args=(tuple(prm)))
return predict
def fit_and_select(self, part=1):
beta_range = np.linspace(0.1, 0.5, 5)
sigma_range = np.linspace(0.2, 1, 5)
gamma_range = np.linspace(0.1, 0.25, 5)
s_range = np.linspace(0.7, 0.85, 10)
t_range = np.linspace(0.5, 1, 10)
# Creation du modèle:
model = SEIR()
model.smoothing = True
model.import_dataset()
model.fit_step_1_details=False
iter = 0
total_iter = 5 * 5 * 10 * 10
for s in range(0, len(sigma_range)):
for sig in range(0, len(sigma_range)):
for g in range(0, len(gamma_range)):
for s in range(0, len(s_range)):
for t in range(0, len(t_range)):
# Init parameters:
model.beta = beta_range[part]
model.sigma = sigma_range[sig]
model.gamma = gamma_range[g]
model.hp = self.hp
model.s = s_range[s]
model.t = t_range[t]
model.hcr = 0
model.pc = 0
model.pd = 0
model.pcr = 0
score = model.fit(method='method_1')
iter += 1
print('iter{} / {}; score = {}'.format(iter, total_iter, score))
print(model.get_parameters())
file = open('mod_select_part_{}.csv'.format(part), 'a')
str_array = []
str_array.append(str(score))
str_array.append(str(beta_range[part]))
str_array.append(str(sigma_range[sig]))
str_array.append(str(gamma_range[g]))
str_array.append(str(s_range[s]))
str_array.append(str(t_range[t]))
best_param = model.get_parameters()
for item in best_param:
str_array.append(str(item))
string = ';'.join(str_array)
file.write(string)
file.write('\n')
file.close()
def fit_and_select_random(self, seed=1, id='1'):
# Creation du modèle:
model = SEIR()
model.smoothing = True
model.import_dataset()
model.fit_step_1_details = False
np.random.seed(seed)
iter = 1
while True:
model.beta = np.random.uniform(self.beta_min, self.beta_max)
model.sigma = np.random.uniform(self.sigma_min, self.sigma_max)
model.gamma = np.random.uniform(self.gamma_min, self.gamma_max)
model.hp = np.random.uniform(self.hp_min, self.hp_max)
model.s = np.random.uniform(self.s_min, self.s_max)
model.t = np.random.uniform(self.t_min, self.t_max)
model.hcr = 0
model.pc = 0
model.pd = 0
model.pcr = 0
str_array_tmp = []
str_array_tmp.append(str(model.beta))
str_array_tmp.append(str(model.sigma))
str_array_tmp.append(str(model.gamma))
str_array_tmp.append(str(model.s))
str_array_tmp.append(str(model.t))
score = model.fit(method='method_1')
str_array = [str(score)]
for i in range(0, len(str_array_tmp)):
str_array.append(str_array_tmp[i])
iter += 1
print('iter{} ; score = {}'.format(iter, score))
print(model.get_parameters())
file = open('mod_select_id_{}.csv'.format(id), 'a')
str_array.append(str(model.beta))
str_array.append(str(model.sigma))
str_array.append(str(model.gamma))
str_array.append(str(model.s))
str_array.append(str(model.t))
best_param = model.get_parameters()
for item in best_param:
str_array.append(str(item))
string = ';'.join(str_array)
file.write(string)
file.write('\n')
file.close()
"score;beta_start;sigma_start;gamma_start;s_max;t_max;score;beta;sigma;gamma;s;t"
def fit(self, display=False, method='method_1'):
"""
Compute best epidemic parameters values according to model's hyperparameters and the dataset
"""
if method == 'method_1':
# ======================================================================== #
# First Step:
# Fit the following parameters:
# Beta, sigma, gamma, hp, t, s.
# ======================================================================== #
# Init to zero some parameters:
self.hcr = 0
self.pc = 0
self.pd = 0
self.pcr = 0
# Get initial value for parameters:
init_prm = (self.beta, self.sigma, self.gamma, self.hp, self.s, self.t)
# Bounds
bds = [(self.beta_min, self.beta_max),
(self.sigma_min, self.sigma_max),
(self.gamma_min, self.gamma_max),
(self.hp_min, self.hp_max),
(self.s_min, self.s_max),
(self.t_min, self.t_max)]
# Constraint on parameters:
cons = ({'type': 'ineq', 'fun': lambda x: -x[0] + self.beta_max},
{'type': 'ineq', 'fun': lambda x: -x[1] + self.sigma_max},
{'type': 'ineq', 'fun': lambda x: -x[2] + self.gamma_max},
{'type': 'ineq', 'fun': lambda x: -x[3] + self.hp_max},
{'type': 'ineq', 'fun': lambda x: -x[4] + self.s_max},
{'type': 'ineq', 'fun': lambda x: -x[5] + self.t_max},
{'type': 'ineq', 'fun': lambda x: x[0] - self.beta_min},
{'type': 'ineq', 'fun': lambda x: x[1] - self.sigma_min},
{'type': 'ineq', 'fun': lambda x: x[2] - self.gamma_min},
{'type': 'ineq', 'fun': lambda x: x[3] - self.hp_min},
{'type': 'ineq', 'fun': lambda x: x[4] - self.s_min},
{'type': 'ineq', 'fun': lambda x: x[5] - self.t_min})
# Optimizer
res = None
if self.optimizer == 'LBFGSB':
res = minimize(self.objective, np.asarray(init_prm),
method='L-BFGS-B',
#options={'eps': self.opti_step},
constraints=cons,
bounds=bds,
args=('MSE_selector', False, display))
else:
if self.optimizer == 'COBYLA':
res = minimize(self.objective, np.asarray(init_prm),
method='COBYLA',
args=('MSE_selector', False, display),
constraints=cons)
else: # Auto
res = minimize(self.objective, np.asarray(init_prm),
constraints=cons,
options={'eps': self.opti_step},
args=('MSE_selector', False, display))
if display:
# Print optimizer result
print(res)
# Update model parameters:
self.beta = res.x[0]
self.sigma = res.x[1]
self.gamma = res.x[2]
self.hp = res.x[3]
self.s = res.x[4]
self.t = res.x[5]
if method == 'method_2':
# ======================================================================== #
# Method_2: sans S et T
# Fit the following parameters:
# Beta, sigma, gamma, hp, t, s.
# ======================================================================== #
# Init to zero some parameters:
self.hcr = 0
self.pc = 0
self.pd = 0
self.pcr = 0
# Get initial value for parameters:
init_prm = (self.beta, self.sigma, self.gamma, self.hp)
# Bounds
bds = [(self.beta_min, self.beta_max),
(self.sigma_min, self.sigma_max),
(self.gamma_min, self.gamma_max),
(self.hp_min, self.hp_max)]
# Constraint on parameters:
cons = ({'type': 'ineq', 'fun': lambda x: -x[0] + self.beta_max},
{'type': 'ineq', 'fun': lambda x: -x[1] + self.sigma_max},
{'type': 'ineq', 'fun': lambda x: -x[2] + self.gamma_max},
{'type': 'ineq', 'fun': lambda x: -x[3] + self.hp_max},
{'type': 'ineq', 'fun': lambda x: x[0] - self.beta_min},
{'type': 'ineq', 'fun': lambda x: x[1] - self.sigma_min},
{'type': 'ineq', 'fun': lambda x: x[2] - self.gamma_min},
{'type': 'ineq', 'fun': lambda x: x[3] - self.hp_min})
# Optimizer
res = None
if self.optimizer == 'LBFGSB':
res = minimize(self.objective, np.asarray(init_prm),
method='L-BFGS-B',
options={'eps': self.opti_step},
constraints=cons,
bounds=bds,
args=('MSE_selector', False, display))
else:
if self.optimizer == 'COBYLA':
res = minimize(self.objective, np.asarray(init_prm),
method='COBYLA',
args=('MSE_selector', False, display),
constraints=cons)
else: # Auto
res = minimize(self.objective, np.asarray(init_prm),
constraints=cons,
options={'eps': self.opti_step},
args=('MSE_selector', False, display))
if display:
# Print optimizer result
print(res)
# Update model parameters:
self.beta = res.x[0]
self.sigma = res.x[1]
self.gamma = res.x[2]
self.hp = res.x[3]
return res.fun
def objective(self, parameters, method, print_details=False, display=False):
if method == 'step_1':
# Get full parameters:
if len(parameters) == 6:
params = (parameters[0], parameters[1], parameters[2], parameters[3], 0, 0, 0, 0, parameters[4], parameters[5])
else:
params = (parameters[0], parameters[1], parameters[2], parameters[3], 0, 0, 0, 0, self.s, self.t)
# Get initial state:
init_state = self.get_initial_state(sensib=params[-2], test_rate=params[-1], sigma=params[1])
# Make predictions:
pred = self.predict(duration=self.dataset.shape[0],
parameters=params,
initial_state=init_state)
# Un-cumul tests predictions:
uncumul = []
uncumul.append(pred[0][7])
for i in range(1, pred.shape[0]):
uncumul.append(pred[i][7] - pred[i-1][7])
if display:
print(params)
# Compute the joint probability of observations
prb = 0
for i in range(0, pred.shape[0]):
# ======================================= #
# PART 1: Fit testing rate by comparing
# Test predictions and the number of test
# ======================================= #
n = np.around(uncumul[i] * self.binom_smoother_A)
k = np.around(self.dataset[i][2])
p = params[-1] / self.binom_smoother_A
if n < 0:
p_k1 = self.overflow
else:
if k > n:
p_k1 = self.overflow
else:
p_k1 = np.log(binom.pmf(k=k, n=n, p=p))
if p_k1 == - math.inf:
p_k1 = self.overflow
#print('pred={}, n={}, n*p= {} k={}, p={}, p_k1={}'.format(uncumul[i], n, n*p, k, p, p_k1))
prb -= p_k1 * self.w_1
# ======================================= #
# PART 2: fit on positive tests
# ======================================= #
p = params[-2] / self.binom_smoother_B
n = np.around(uncumul[i] * params[-1] * self.binom_smoother_B)
k = np.around(self.dataset[i][1])
if n < 0:
p_k2 = self.overflow
else:
if k > n:
p_k2 = self.overflow
else:
p_k2 = np.log(binom.pmf(k=k, n=n, p=p))
if p_k2 == - math.inf:
p_k2 = self.overflow
prb -= p_k2 * self.w_2
# ======================================= #
# PART 3: fit on I to H
# ======================================= #
n = np.around(pred[i][8] * self.binom_smoother_C)
k = np.around(self.dataset[i][4])
p = 1 / self.binom_smoother_C
if n < 0:
p_k3 = self.overflow
else:
if k > n:
p_k3 = self.overflow
else:
p_k3 = np.log(binom.pmf(k=k, n=n, p=p))
if p_k3 == - math.inf:
p_k3 = self.overflow
prb -= p_k3 * self.w_3
if self.fit_step_1_details:
print('iter {}: p_k1= {}, p_k2= {}, p_k3= {}'.format(i, p_k1, p_k2, p_k3))
print('test observ vs predict: {} - {}'.format(self.dataset[i][1], np.around(uncumul[i] * params[-1] * params[-2])))
if display:
print('loss: {}'.format(prb))
#print('loss: {}'.format(prb))
return prb
if method == 'MSE_selector':
# Time vector
time = np.arange(7, 33)
# Get full parameters:
if len(parameters) == 6:
params = (parameters[0], parameters[1], parameters[2], parameters[3], 0, 0, 0, 0, parameters[4], parameters[5])
else:
params = (parameters[0], parameters[1], parameters[2], parameters[3], 0, 0, 0, 0, self.s, self.t)
# Get initial state:
init_state = self.get_initial_state(sensib=params[-2], test_rate=params[-1], sigma=params[1])
# Make predictions:
pred = self.predict(duration=self.dataset.shape[0],
parameters=params,
initial_state=init_state)
# Un-cumul tests predictions:
uncumul = []
uncumul.append(pred[0][7])
for i in range(1, pred.shape[0]):
uncumul.append(pred[i][7] - pred[i-1][7])
if display:
print(params)
SSE = []
for t in time:
# ======================================= #
# PART 1: Fit testing rate by comparing
# Test predictions and the number of test
# ======================================= #
predict = uncumul[t] * params[-1]
observ = self.dataset[t][2]
sse_1 = (observ - predict) ** 2
SSE.append(sse_1)
# ======================================= #
# PART 2: fit on positive tests
# ======================================= #
observ = self.dataset[t][1]
predict = uncumul[t] * params[-1] * params[-2]
sse_2 = (observ - predict) ** 2
SSE.append(sse_2)
# ======================================= #
# PART 3: fit on I to H
# ======================================= #
observ = self.dataset[t][4]
predict = pred[t][8]
sse_3 = (observ - predict) ** 2
SSE.append(sse_3)
result = np.sum(SSE)
if display:
print('SSE: {}'.format(result))
return result
def import_dataset(self):
url = "https://raw.githubusercontent.com/ADelau/proj0016-epidemic-data/main/data.csv"
# Import the dataframe:
raw = pd.read_csv(url, sep=',', header=0)
raw['num_positive'][0] = 1
raw['num_tested'][0] = 1
# Ad a new column at the end with cumulative positive cases at the right
cumul_positive = np.copy(raw['num_positive'].to_numpy())
for i in range(1, len(cumul_positive)):
cumul_positive[i] += cumul_positive[i-1]
raw.insert(7, 'cumul_positive', cumul_positive)
if self.smoothing:
self.dataframe = dataframe_smoothing(raw)
else: self.dataframe = raw
self.dataset = self.dataframe.to_numpy()
self.I_0 = self.dataset[0][1] / (self.s * self.t)
self.E_0 = self.I_0 * 2
self.R_0 = 0
self.S_0 = 1000000 - self.I_0 - self.E_0
def set_param(self):
"""
Set the actual best values of parameters:
Note: header for the result file:
error;beta;sigma;gamma;hp;hcr;pc;pd;pcr;sensib;test_rate;binom_smoother;smoothing;optimizer;opti_step;
"""
# Epidemic parameters:
self.beta = 0.453638
self.sigma = 0.885727
self.gamma = 0.208646
self.hp = 0.0207093
self.hcr = 0.0313489
self.pc = 0.0776738
self.pd = 0.0417785
self.pcr = 0.244847
def validation_result_analysis():
result = pd.read_csv('validation_result.csv', sep=';')
result.sort_values(by=['error'], inplace=True, ignore_index=True, ascending=True)
print(result)
npr = result.to_numpy()
for i in range(0, npr.shape[0]):
# Create a model:
model = SEIR()
# Load parameters:
model.beta = npr[i][1]
model.sigma = npr[i][2]
model.gamma = npr[i][3]
model.hp = npr[i][4]
model.hcr = 0
model.pc = 0
model.pd = 0
model.pcr = 0
model.s = npr[i][9]
model.t = npr[i][10]
model.smoothing = False
# Import dataset:
model.import_dataset()
# Make predictions:
predictions = model.predict(duration=model.dataset.shape[0])
# Uncumul
uncumul = []
uncumul.append(predictions[0][7])
for j in range(1, predictions.shape[0]):
uncumul.append(predictions[j][7] - predictions[j - 1][7])
# Plot:
time = model.dataset[:, 0]
# Adapt test + with sensit and testing rate
for j in range(0, len(time)):
uncumul[j] = uncumul[j] * model.s * model.t
# Plot cumul positive
plt.scatter(time, model.dataset[:, 1], c='blue', label='test+')
plt.plot(time, uncumul, c='blue', label='test+')
# Plot hospit
plt.scatter(time, model.dataset[:, 4], c='red', label='hospit cumul pred')
plt.plot(time, predictions[:, 8], c='red', label='pred hopit cumul')
plt.legend()
plt.title('index {}'.format(i))
plt.show()
print('---------------------------------------------------------')
row = result.loc[i, :]
print(row)
print("<Press enter/return to continue>")
input()
def first():
# Create the model:
model = SEIR()
# Import the dataset
model.import_dataset()
# Fit the model:
model.fit(display=True)
# Make pedictions:
predictions = model.predict(model.dataset.shape[0])
time = model.dataset[:, 0]
# Uncumul
uncumul = []
uncumul.append(predictions[0][7])
for j in range(1, predictions.shape[0]):
uncumul.append(predictions[j][7] - predictions[j - 1][7])
# Adapt test + with sensit and testing rate
for j in range(0, len(time)):
uncumul[j] = uncumul[j] * model.s * model.t
# Plot cumul positive
plt.scatter(time, model.dataset[:, 1], c='blue', label='test+')
plt.plot(time, uncumul, c='blue', label='test+')
# Plot hospit
plt.scatter(time, model.dataset[:, 4], c='red', label='hospit cumul pred')
plt.plot(time, predictions[:, 8], c='red', label='pred hopit cumul')
plt.legend()
plt.show()
if __name__ == "__main__":
validation_result_analysis()