-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset_old.py
426 lines (363 loc) · 16.5 KB
/
Dataset_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
MAX_X_ABS_VAL = 5250
MAX_Y_ABS_VAL = 3400
class Dataset():
def __init__(self):
# Original format training set, Numpy array
self.original_train_x = None
self.original_train_y = None
# Original format testing set, Numpy array + headers array
self.original_test_x = None
self.original_test_y = None
# Original format validation set, Numpy array + headers array
self.original_validation_x = None
self.original_validation_y = None
# Original set headers
self.original_x_header = None
self.original_y_header = None
# Player-pairs format of the training set
self.pairs_train_x = None
self.pairs_train_y = None
# Player-pairs format of the testing set
self.pairs_test_x = None
self.pairs_test_y = None
# Player-pairs format of the validation set
self.pairs_validation_x = None
self.pairs_validation_y = None
# Pairs headers
self.pairs_x_header = None
self.pairs_y_header = None
# Standard scaler:
self.standard_scaler = StandardScaler()
def import_original_training(self, split_train=0.9, split_test=0.29, split_val=0.01):
# Read the csv to pandas
x_df = pd.read_csv('Original_data/input_training_set.csv', sep=',')
y_df = pd.read_csv('Original_data/output_training_set.csv', sep=',')
# Replace positions axis
x_df = self.positions_convertor(x_df)
# Store headers
self.original_x_header = x_df.columns
self.original_y_header = y_df.columns
# Get np version
x = x_df.to_numpy()
y = y_df.to_numpy()
# Split the set
x_train, x_t, y_train, y_t = train_test_split(x, y, test_size=(1-split_train), shuffle=True)
x_test, x_valid, y_test, y_valid = train_test_split(x_t, y_t, test_size=(split_val / (split_test + split_val)), shuffle=True)
# Store
self.original_train_x = x_train
self.original_train_y = y_train
self.original_test_x = x_test
self.original_test_y = y_test
self.original_validation_x = x_valid
self.original_validation_y = y_valid
def convertor(self, x, y=None):
"""
Adapt a standard dataset to the pairs form with new features
"""
# Compute distance matrix:
dist_matrix = Features_computers.players_distances(x)
# Construct pairs dataset:
y_pairs = None
if y is not None:
x_pairs, y_pairs = self.make_players_pairs_one_hot(x, y)
else:
x_pairs = self.make_players_pairs_one_hot(x)
# Get position sub_array:
x_tmp = x.to_numpy()
p_x_pos = np.zeros((x_tmp.shape[0], 22))
p_y_pos = np.zeros((x_tmp.shape[0], 22))
for i in range(0, 22):
p_x_pos[:, i] = x_tmp[:, 2 + i * 2]
p_y_pos[:, i] = x_tmp[:, 3 + i * 2]
p_x_pos = np.repeat(p_x_pos, repeats=22, axis=0)
p_y_pos = np.repeat(p_y_pos, repeats=22, axis=0)
# Add features:
# Is pass forward:
x_pairs = Features_computers.is_pass_forward(x_pairs)
# Pass distance:
x_pairs = Features_computers.pass_distance(x_pairs, dist_matrix)
# Compute min, avg and std distance between same team and opposant, sender and reciever:
x_pairs = Features_computers.dist_tool(x_pairs, dist_matrix)
# Add gravity centers:
x_pairs = Features_computers.gravity_center(x_pairs, x)
# Add cross product (is between two players)
x_pairs = Features_computers.is_between(x_pairs, x)
# Add max cos similarity:
#x_pairs = Features_computers.max_cosine_similarity(x_pairs, p_x_pos, p_y_pos)
# Normalize the dataset
x_pairs = Features_computers.normalizer(x_pairs)
# Delete all empty columns:
headers = x_pairs.columns
to_drop = []
for name in headers:
if 'feature_' in name:
to_drop.append(name)
if 'sender' in name or 'player_j' in name or 'pass_index' in name:
to_drop.append(name)
x_pairs.drop(columns=to_drop, inplace=True)
if y is not None:
return x_pairs, y_pairs
else:
return x_pairs
def learning_set_builders(self):
"""
This method adapt the imported original learning set in pairs of
players form with new features
"""
# Transform in a dataframe:
original_train_x = pd.DataFrame(self.original_train_x, columns=self.original_x_header)
original_train_y = pd.DataFrame(self.original_train_y, columns=self.original_y_header)
original_test_x = pd.DataFrame(self.original_test_x, columns=self.original_x_header)
original_test_y = pd.DataFrame(self.original_test_y, columns=self.original_y_header)
original_validation_x = pd.DataFrame(self.original_validation_x, columns=self.original_x_header)
original_validation_y = pd.DataFrame(self.original_validation_y, columns=self.original_y_header)
# Training set
x, y = self.convertor(original_train_x, original_train_y)
self.pairs_train_x = x.to_numpy()
self.pairs_train_y = y.to_numpy()
# Headers
self.pairs_x_header = x.columns
self.pairs_y_header = y.columns
# Testing set
x, y = self.convertor(original_test_x, original_test_y)
self.pairs_test_x = x.to_numpy()
self.pairs_test_y = y.to_numpy()
# Validation set
x, y = self.convertor(original_validation_x, original_validation_y)
self.pairs_validation_x = x.to_numpy()
self.pairs_validation_y = y.to_numpy()
def make_players_pairs(self, x, y=None):
"""
Take an original format dataframe as input and return
a player_pairs format dataframe in array who accept
50 features
"""
# Get numpy version:
x_np = x.to_numpy()
y_np = None
if y is not None:
y_np = y.to_numpy()
# Get the number of entries:
n = x.shape[0]
# Get position sub_array:
p_x_pos = np.zeros((n, 22))
p_y_pos = np.zeros((n, 22))
for i in range(0, 22):
p_x_pos[:, i] = x_np[:, 2 + i * 2]
p_y_pos[:, i] = x_np[:, 3 + i * 2]
# Make a matrix to store each pass frame: n passes with 21 potential receiver and 50 features
n_features = 50
if y is not None:
n_features += 1
passes = np.zeros((n, 22, n_features))
# Copy sender and time start
for i in range(0, n):
sender = x['sender'].iloc[i]
passes[i, :, 0:3] += [sender, x['x_{:0.0f}'.format(sender)].iloc[i], x['y_{:0.0f}'.format(sender)].iloc[i]]
# The index of the pass
passes[i, :, 7] = i
passes[i, :, 8] = x['time_start'].iloc[i]
# Copy receivers
rc = np.arange(1, 23, dtype=float)
passes[:, :, 3] = rc
# Position for each receiver
for i in range(0, n):
passes[i, :, 4] += p_x_pos[i, :]
passes[i, :, 5] += p_y_pos[i, :]
# Same team (1) or not (0)
for i in range(0, n):
same_team = 1
if passes[i][0][0] > 11:
same_team = 0
passes[i, 0:12, 6] = same_team
passes[i, 12:23, 6] = 1 - same_team
# add target column:
if y is not None:
for i in range(0, n):
passes[i, y_np[i]-1, -1] = 1
# Reshape the matrix in 2D:
passes = passes.reshape((n*22, n_features))
# Y output:
y_opt = None
if y is not None:
y_opt = passes[:, n_features-1]
y_opt = pd.DataFrame(y_opt, columns=['pass'])
# X output
x_opt = passes[:, :-1]
# Get dataframe headers:
x_header = ['sender', 'x_sender', 'y_sender', 'player_j', 'x_j', 'y_j', 'same_team', 'pass_index', 'time_start']
for i in range(9, n_features - 1):
x_header.append('feature_{}'.format(i))
# In dataframe
x_opt = pd.DataFrame(x_opt, columns=x_header)
if y is not None:
return x_opt, y_opt
else:
return x_opt
def make_players_pairs_one_hot(self, x, y=None):
"""
Take an original format dataframe as input and return
a player_pairs format dataframe in array who accept
50 features
"""
# Get numpy version:
x_np = x.to_numpy()
y_np = None
if y is not None:
y_np = y.to_numpy()
# Get the number of entries:
n = x.shape[0]
# Get position sub_array:
p_x_pos = np.zeros((n, 22))
p_y_pos = np.zeros((n, 22))
for i in range(0, 22):
p_x_pos[:, i] = x_np[:, 2 + i * 2]
p_y_pos[:, i] = x_np[:, 3 + i * 2]
# Make a matrix to store each pass frame: n passes with 21 potential receiver and 50 features
n_features = 100
if y is not None:
n_features += 1
passes = np.zeros((n, 22, n_features))
# Copy sender and time start
for i in range(0, n):
sender = int(x['sender'].iloc[i])
passes[i, :, sender-1] = 1
passes[i, :, 51] = sender
passes[i, :, 22:24] += [x['x_{:0.0f}'.format(sender)].iloc[i], x['y_{:0.0f}'.format(sender)].iloc[i]]
# Copy receivers
rc = np.zeros((22, 22))
rc_bis = np.arange(1, 23)
for i in range(0, 22):
rc[i, i] = 1
for i in range(0, n):
passes[i, :, 24:46] = rc
passes[i, :, 52] = rc_bis
# The index of the pass and time start
passes[i, :, 48] = i
passes[i, :, 49] = x['time_start'].iloc[i]
# Position for each receiver
for i in range(0, n):
passes[i, :, 46] += p_x_pos[i, :]
passes[i, :, 47] += p_y_pos[i, :]
# Same team (1) or not (0)
for i in range(0, n):
same_team = 1
if x['sender'].iloc[i] > 11:
same_team = 0
passes[i, 0:12, 50] = same_team
passes[i, 12:23, 50] = 1 - same_team
# add target column:
if y is not None:
for i in range(0, n):
passes[i, y_np[i]-1, -1] = 1
# Reshape the matrix in 2D:
passes = passes.reshape((n*22, n_features))
# Y output:
y_opt = None
if y is not None:
y_opt = passes[:, n_features-1]
y_opt = pd.DataFrame(y_opt, columns=['pass'])
# X output
x_opt = passes[:, :-1]
# Get dataframe headers:
x_headers = []
# Add one hot sender
for i in range(0, 22):
x_headers.append('S_{}'.format(i+1))
x_headers.append('x_sender')
x_headers.append('y_sender')
for i in range(0, 22):
x_headers.append('J_{}'.format(i+1))
x_headers.append('x_j')
x_headers.append('y_j')
x_headers.append('pass_index')
x_headers.append('time_start')
x_headers.append('same_team')
x_headers.append('sender')
x_headers.append('player_j')
for i in range(len(x_headers), n_features - 1):
x_headers.append('feature_{}'.format(i))
# In dataframe
x_opt = pd.DataFrame(x_opt, columns=x_headers)
if y is not None:
return x_opt, y_opt
else:
return x_opt
def save_dataset(self):
original_train_x = pd.DataFrame(self.original_train_x, columns=self.original_x_header)
original_train_x.to_csv('personal_data/original_train_x.csv', sep=',', header=True, index=True)
original_train_y = pd.DataFrame(self.original_train_y, columns=self.original_y_header)
original_train_y.to_csv('personal_data/original_train_y.csv', sep=',', header=True, index=True)
original_test_x = pd.DataFrame(self.original_test_x, columns=self.original_x_header)
original_test_x.to_csv('personal_data/original_test_x.csv', sep=',', header=True, index=True)
original_test_y = pd.DataFrame(self.original_test_y, columns=self.original_y_header)
original_test_y.to_csv('personal_data/original_test_y.csv', sep=',', header=True, index=True)
original_valid_x = pd.DataFrame(self.original_validation_x, columns=self.original_x_header)
original_valid_x.to_csv('personal_data/original_valid_x.csv', sep=',', header=True, index=True)
original_valid_y = pd.DataFrame(self.original_validation_y, columns=self.original_y_header)
original_valid_y.to_csv('personal_data/original_valid_y.csv', sep=',', header=True, index=True)
pairs_train_x = pd.DataFrame(self.pairs_train_x, columns=self.pairs_x_header)
pairs_train_x.to_csv('personal_data/pairs_train_x.csv', sep=',', header=True, index=True)
pairs_train_y = pd.DataFrame(self.pairs_train_y, columns=self.pairs_y_header)
pairs_train_y.to_csv('personal_data/pairs_train_y.csv', sep=',', header=True, index=True)
pairs_test_x = pd.DataFrame(self.pairs_test_x, columns=self.pairs_x_header)
pairs_test_x.to_csv('personal_data/pairs_test_x.csv', sep=',', header=True, index=True)
pairs_test_y = pd.DataFrame(self.pairs_test_y, columns=self.pairs_y_header)
pairs_test_y.to_csv('personal_data/pairs_test_y.csv', sep=',', header=True, index=True)
pairs_valid_x = pd.DataFrame(self.pairs_validation_x, columns=self.pairs_x_header)
pairs_valid_x.to_csv('personal_data/pairs_valid_x.csv', sep=',', header=True, index=True)
pairs_valid_y = pd.DataFrame(self.pairs_validation_y, columns=self.pairs_y_header)
pairs_valid_y.to_csv('personal_data/pairs_valid_y.csv', sep=',', header=True, index=True)
def restore_dataset(self):
original_train_x = pd.read_csv('personal_data/original_train_x.csv', sep=',', index_col=0)
self.original_x_header = original_train_x.columns
self.original_train_x = original_train_x.to_numpy()
original_train_y = pd.read_csv('personal_data/original_train_y.csv', sep=',', index_col=0)
self.original_y_header = original_train_y.columns
self.original_train_y = original_train_y.to_numpy()
original_test_x = pd.read_csv('personal_data/original_test_x.csv', sep=',', index_col=0)
self.original_test_x = original_test_x.to_numpy()
original_test_y = pd.read_csv('personal_data/original_test_y.csv', sep=',', index_col=0)
self.original_test_y = original_test_y.to_numpy()
original_valid_x = pd.read_csv('personal_data/original_valid_x.csv', sep=',', index_col=0)
self.original_validation_x = original_valid_x.to_numpy()
original_valid_y = pd.read_csv('personal_data/original_valid_y.csv', sep=',', index_col=0)
self.original_validation_y = original_valid_y.to_numpy()
pairs_train_x = pd.read_csv('personal_data/pairs_train_x.csv', sep=',', index_col=0)
self.pairs_train_x = pairs_train_x.to_numpy()
self.pairs_x_header = pairs_train_x.columns
pairs_train_y = pd.read_csv('personal_data/pairs_train_y.csv', sep=',', index_col=0)
self.pairs_train_y = pairs_train_y.to_numpy()
self.pairs_y_header = pairs_train_y.columns
pairs_test_x = pd.read_csv('personal_data/pairs_test_x.csv', sep=',', index_col=0)
self.pairs_test_x = pairs_test_x.to_numpy()
pairs_test_y = pd.read_csv('personal_data/pairs_test_y.csv', sep=',', index_col=0)
self.pairs_test_y = pairs_test_y.to_numpy()
pairs_valid_x = pd.read_csv('personal_data/pairs_valid_x.csv', sep=',', index_col=0)
self.pairs_validation_x = pairs_valid_x.to_numpy()
pairs_valid_y = pd.read_csv('personal_data/pairs_valid_y.csv', sep=',', index_col=0)
self.pairs_validation_y = pairs_valid_y.to_numpy()
def positions_convertor(self, dataframe):
"""
Replace axis of the dataset
:param dataset: original datafram
:return: rebuilded datafram
"""
# Get the numpy version:
dataset = dataframe.to_numpy()
# Compute x positions
idx = 2
while idx < 46:
dataset[:, idx] = 5260 + dataset[:, idx]
idx += 2
# the same for y:
idx = 3
while idx < 46:
dataset[:, idx] = 3400 + dataset[:, idx]
idx += 2
new_df = pd.DataFrame(dataset, columns=dataframe.columns)
return new_df