-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_unet.py
414 lines (359 loc) · 15.6 KB
/
evaluate_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import numpy as np
import os
import matplotlib.pyplot as plt
from datetime import datetime
from datetime import timedelta
from tqdm import tqdm
from src import data, evaluate, model, preprocessing, visualization
from src.lib import utils
from src.data import MontevideoFoldersDataset, MontevideoFoldersDataset_w_time
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
from src.dl_models.unet import UNet, UNet2
from src.lib.latex_options import Colors, Linestyles
from src.lib.utils import get_model_name
### SETUP #############################################################################
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print('using device:', device)
MSE = nn.MSELoss()
MAE = nn.L1Loss()
normalize = preprocessing.normalize_pixels(mean0 = False) #values between [0,1]
fontsize = 22 # 22 generates the font more like the latex text
borders = np.linspace(1, 450, 100)
#######################################################################################
REGION = 'R3' # [MVD, URU, R3]
if REGION == 'MVD':
dataset = 'mvd'
elif REGION == 'URU':
dataset = 'uru'
elif REGION == 'R3':
dataset = 'region3'
PREDICT_T_LIST = [6, 12, 18, 24, 30]
OUTPUT_ACTIVATION = 'tanh'
FILTERS = 16
PREDICT_DIFF = True
evaluate_test = True
GENERATE_ERROR_MAP = True
if GENERATE_ERROR_MAP:
RMSE_pct_maps_list = []
RMSE_maps_list = []
MAE_maps_list = []
for PREDICT_T in PREDICT_T_LIST:
if PREDICT_T == 6:
PREDICT_HORIZON = '60min'
if PREDICT_T == 12:
PREDICT_HORIZON = '120min'
if PREDICT_T == 18:
PREDICT_HORIZON = '180min'
if PREDICT_T == 24:
PREDICT_HORIZON = '240min'
if PREDICT_T == 30:
PREDICT_HORIZON = '300min'
print('Predict Horizon:', PREDICT_HORIZON)
MODEL_NAME = get_model_name(predict_horizon=PREDICT_HORIZON, architecture='UNET2', predict_diff=PREDICT_DIFF)
MODEL_PATH = '/clusteruy/home03/DeepCloud/deepCloud/checkpoints/' + REGION + '/' + PREDICT_HORIZON + '/' + MODEL_NAME
model = UNet2(
n_channels=3,
n_classes=1,
output_activation=OUTPUT_ACTIVATION,
filters=FILTERS
).to(device)
model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device('cpu'))["model_state_dict"])
if evaluate_test:
CSV_PATH = '/clusteruy/home03/DeepCloud/deepCloud/data/region3/test_cosangs_region3.csv'
PATH_DATA = '/clusteruy/home03/DeepCloud/deepCloud/data/' + dataset + '/test/'
SAVE_IMAGES_PATH = 'graphs/' + REGION + '/' + PREDICT_HORIZON + '/test/' + MODEL_PATH.split('/')[-1][:-17]
SAVE_PER_HOUR_ERROR = 'reports/eval_per_hour/' + REGION + '/' + PREDICT_HORIZON + '/test'
SAVE_BORDERS_ERROR = 'reports/borders_cut/' + REGION + '/' + PREDICT_HORIZON + '/test'
else:
CSV_PATH = '/clusteruy/home03/DeepCloud/deepCloud/data/region3/val_cosangs_region3.csv'
PATH_DATA = '/clusteruy/home03/DeepCloud/deepCloud/data/' + dataset + '/validation/'
SAVE_IMAGES_PATH = 'graphs/' + REGION + '/' + PREDICT_HORIZON + '/' + MODEL_PATH.split('/')[-1][:-17]
SAVE_PER_HOUR_ERROR = 'reports/eval_per_hour/' + REGION + '/' + PREDICT_HORIZON
SAVE_BORDERS_ERROR = 'reports/borders_cut/' + REGION + '/validation'
try:
os.mkdir(SAVE_IMAGES_PATH)
except:
pass
try:
os.mkdir(SAVE_PER_HOUR_ERROR)
except:
pass
try:
os.mkdir(SAVE_BORDERS_ERROR)
except:
pass
val_dataset = MontevideoFoldersDataset_w_time(
path=PATH_DATA,
in_channel=3,
out_channel=PREDICT_T,
min_time_diff=5,
max_time_diff=15,
csv_path=CSV_PATH,
transform=normalize,
output_last=True
)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)
in_frames, out_frames, _, _ = next(iter(val_loader))
M, N = out_frames[0,0].shape[0], out_frames[0,0].shape[1]
RMSE_pct_list = []
RMSE_list = []
MAE_list = []
MAE_per_hour = {} # MAE
MAE_pct_per_hour = {}
RMSE_per_hour = {} # RMSE
RMSE_pct_per_hour = {}
MBD_per_hour = {} # MBD
MBD_pct_per_hour = {}
FS_per_hour = {} # FS
if GENERATE_ERROR_MAP:
mean_image = np.zeros((M,N))
MAE_error_image = np.zeros((M,N))
MAE_pct_error_image = np.zeros((M,N))
RMSE_pct_error_image = np.zeros((M,N))
RMSE_error_image = np.zeros((M,N))
model.eval()
with torch.no_grad():
for val_batch_idx, (in_frames, out_frames, in_time, out_time) in enumerate(tqdm(val_loader)):
in_frames = in_frames.to(device=device)
out_frames = out_frames.to(device=device)
day, hour, minute = int(out_time[0, 0, 0]), int(out_time[0, 0, 1]), int(out_time[0, 0, 2])
if not PREDICT_DIFF:
frames_pred = model(in_frames)
if PREDICT_DIFF:
diff_pred = model(in_frames)
frames_pred = torch.add(diff_pred[:,0], in_frames[:,2]).unsqueeze(1)
frames_pred = torch.clamp(frames_pred, min=0, max=1)
# MAE
MAE_loss = (MAE(frames_pred, out_frames).detach().item() * 100)
MAE_pct_loss = (MAE_loss / (torch.mean(out_frames[0,0]).cpu().numpy() * 100)) * 100
MAE_list.append(MAE_loss)
if minute < 30:
if (hour, 0) in MAE_per_hour.keys():
MAE_per_hour[(hour, 0)].append(MAE_loss)
MAE_pct_per_hour[(hour, 0)].append(MAE_pct_loss)
else:
MAE_per_hour[(hour, 0)] = [MAE_loss]
MAE_pct_per_hour[(hour, 0)] = [MAE_pct_loss]
else:
if (hour, 30) in MAE_per_hour.keys():
MAE_per_hour[(hour, 30)].append(MAE_loss)
MAE_pct_per_hour[(hour, 30)].append(MAE_pct_loss)
else:
MAE_per_hour[(hour, 30)] = [MAE_loss]
MAE_pct_per_hour[(hour, 30)] = [MAE_pct_loss]
# RMSE
RMSE_loss = torch.sqrt(MSE(frames_pred, out_frames)).detach().item() * 100
RMSE_pct_loss = (RMSE_loss / (torch.mean(out_frames[0, 0]).cpu().numpy() * 100)) * 100
RMSE_list.append(RMSE_loss)
RMSE_pct_list.append(RMSE_pct_loss)
if GENERATE_ERROR_MAP:
mean_image += out_frames[0,0].cpu().numpy()
MAE_error_image += torch.abs(torch.subtract(out_frames[0,0], frames_pred[0,0])).cpu().numpy()
RMSE_error_image += torch.square(torch.subtract(out_frames[0,0], frames_pred[0,0])).cpu().numpy()
if minute<30:
if (hour, 0) in RMSE_per_hour.keys():
RMSE_per_hour[(hour, 0)].append(RMSE_loss)
RMSE_pct_per_hour[(hour, 0)].append(RMSE_pct_loss)
else:
RMSE_per_hour[(hour, 0)] = [RMSE_loss]
RMSE_pct_per_hour[(hour, 0)] = [RMSE_pct_loss]
else:
if (hour, 30) in RMSE_per_hour.keys():
RMSE_per_hour[(hour, 30)].append(RMSE_loss)
RMSE_pct_per_hour[(hour, 30)].append(RMSE_pct_loss)
else:
RMSE_per_hour[(hour, 30)] = [RMSE_loss]
RMSE_pct_per_hour[(hour, 30)] = [RMSE_pct_loss]
# MBD and FS
MBD_loss = (torch.mean(torch.subtract(frames_pred, out_frames)).detach().item() * 100)
MBD_pct_loss = (MBD_loss / (torch.mean(out_frames[0,0]).cpu().numpy() * 100)) * 100
persistence_rmse = torch.sqrt(MSE(in_frames[0, 2], out_frames[0, 0])).detach().item() * 100
forecast_skill = 1 - (RMSE_loss / persistence_rmse)
if minute < 30:
if (hour, 0) in MBD_per_hour.keys():
MBD_per_hour[(hour, 0)].append(MBD_loss)
MBD_pct_per_hour[(hour, 0)].append(MBD_pct_loss)
FS_per_hour[(hour, 0)].append(forecast_skill)
else:
MBD_per_hour[(hour, 0)] = [MBD_loss]
MBD_pct_per_hour[(hour, 0)] = [MBD_pct_loss]
FS_per_hour[(hour, 0)] = [forecast_skill]
else:
if (hour, 30) in MBD_per_hour.keys():
MBD_per_hour[(hour, 30)].append(MBD_loss)
MBD_pct_per_hour[(hour, 30)].append(MBD_pct_loss)
FS_per_hour[(hour, 30)].append(forecast_skill)
else:
MBD_per_hour[(hour, 30)] = [MBD_loss]
MBD_pct_per_hour[(hour, 30)] = [MBD_pct_loss]
FS_per_hour[(hour, 30)] = [forecast_skill]
# GENERATE ERROR IMAGES
if GENERATE_ERROR_MAP:
mean_image = (mean_image / len(val_dataset)) * 1 # contains the mean value of each pixel independently
MAE_error_image = (MAE_error_image / len(val_dataset))
MAE_pct_error_image = (MAE_error_image / mean_image) * 100
RMSE_pct_error_image = (np.sqrt((RMSE_error_image) / len(val_dataset)) / mean_image) * 100
RMSE_error_image = (np.sqrt((RMSE_error_image) / len(val_dataset))) / 1
RMSE_pct_maps_list.append(RMSE_pct_error_image)
RMSE_maps_list.append(RMSE_error_image)
MAE_maps_list.append(MAE_error_image)
np.save(os.path.join(SAVE_IMAGES_PATH, 'mean_image.npy'), mean_image)
fig_name = os.path.join(SAVE_IMAGES_PATH, 'mean_image.pdf')
visualization.show_image_w_colorbar(
image=mean_image,
title=None,
fig_name=fig_name,
save_fig=True,
bar_max=1,
colormap='viridis'
)
plt.close()
np.save(os.path.join(SAVE_IMAGES_PATH, 'MAE_error_image.npy'), MAE_error_image)
fig_name = os.path.join(SAVE_IMAGES_PATH, 'MAE_error_image.pdf')
visualization.show_image_w_colorbar(
image=MAE_error_image,
title=None,
fig_name=fig_name,
save_fig=True,
bar_max=0.3,
colormap='coolwarm'
)
plt.close()
np.save(os.path.join(SAVE_IMAGES_PATH, 'MAE_pct_error_image.npy'), MAE_pct_error_image)
fig_name = os.path.join(SAVE_IMAGES_PATH, 'MAE_pct_error_image.pdf')
visualization.show_image_w_colorbar(
image=MAE_pct_error_image,
title=None,
fig_name=fig_name,
save_fig=True,
bar_max=100,
colormap='coolwarm'
)
plt.close()
np.save(os.path.join(SAVE_IMAGES_PATH, 'RMSE_error_image.npy'), RMSE_error_image)
fig_name = os.path.join(SAVE_IMAGES_PATH, 'RMSE_error_image.pdf')
visualization.show_image_w_colorbar(
image=RMSE_error_image,
title=None,
fig_name=fig_name,
save_fig=True,
bar_max=0.3,
colormap='coolwarm'
)
plt.close()
np.save(os.path.join(SAVE_IMAGES_PATH, 'RMSE_pct_error_image.npy'), RMSE_pct_error_image)
fig_name = os.path.join(SAVE_IMAGES_PATH, 'RMSE_pct_error_image.pdf')
visualization.show_image_w_colorbar(
image=RMSE_pct_error_image,
title=None,
fig_name=fig_name,
save_fig=True,
bar_max=100,
colormap='coolwarm'
)
plt.close()
mean_MAE = []
mean_MAE_pct = []
mean_RMSE = []
mean_RMSE_pct = []
std_MAE = []
std_MAE_pct = []
std_RMSE = []
std_RMSE_pct = []
mean_MBD = []
mean_MBD_pct = []
std_MBD = []
std_MBD_pct = []
mean_FS = []
std_FS = []
sorted_keys = sorted(MAE_per_hour.keys(), key=lambda element: (element[0], element[1]))
hour_list = []
for key in sorted_keys:
hour_list.append(str(key[0]).zfill(2) + ':' + str(key[1]).zfill(2))
mean_MAE.append(np.mean(MAE_per_hour[key]))
std_MAE.append(np.std(MAE_per_hour[key]))
mean_MAE_pct.append(np.mean(MAE_pct_per_hour[key]))
std_MAE_pct.append(np.std(MAE_pct_per_hour[key]))
mean_RMSE.append(np.mean(RMSE_per_hour[key]))
std_RMSE.append(np.std(RMSE_per_hour[key]))
mean_RMSE_pct.append(np.mean(RMSE_pct_per_hour[key]))
std_RMSE_pct.append(np.std(RMSE_pct_per_hour[key]))
mean_MBD.append(np.mean(MBD_per_hour[key]))
std_MBD.append(np.std(MBD_per_hour[key]))
mean_MBD_pct.append(np.mean(MBD_pct_per_hour[key]))
std_MBD_pct.append(np.std(MBD_pct_per_hour[key]))
mean_FS.append(np.mean(FS_per_hour[key]))
std_FS.append(np.std(FS_per_hour[key]))
if SAVE_PER_HOUR_ERROR:
dict_values = {
'model_name': MODEL_PATH.split('/')[-1],
'csv_path': CSV_PATH,
'PREDICT_T': PREDICT_T,
'predict diff': PREDICT_DIFF,
'hour_list': hour_list,
'mean_MAE': mean_MAE,
'std_MAE': std_MAE,
'mean_MAE_pct': mean_MAE_pct,
'std_MAE_pct': std_MAE_pct,
'mean_RMSE': mean_RMSE,
'std_RMSE': std_RMSE,
'mean_RMSE_pct': mean_RMSE_pct,
'std_RMSE_pct': std_RMSE_pct,
'mean_MBD': mean_MBD,
'std_MBD': std_MBD,
'mean_MBD_pct': mean_MBD_pct,
'std_MBD_pct': std_MBD_pct,
'mean_FS': mean_FS,
'std_FS': std_FS,
'mean_total_MAE': np.mean(MAE_list),
'mean_total_RMSE': np.mean(RMSE_list),
'mean_total_RMSE_pct': np.mean(RMSE_pct_list)
}
utils.save_pickle_dict(path=SAVE_PER_HOUR_ERROR, name=MODEL_PATH.split('/')[-1][:-17], dict_=dict_values)
if GENERATE_ERROR_MAP:
mae_errors_borders = []
r_RMSE_errors_borders = []
for i in borders:
p = int(i)
mae_errors_borders.append(np.mean(MAE_error_image[p:-p, p:-p]))
r_RMSE_errors_borders.append(np.mean(RMSE_pct_error_image[p:-p, p:-p]))
if SAVE_BORDERS_ERROR:
dict_values = {
'model_name': MODEL_PATH.split('/')[-1],
'test_dataset': evaluate_test,
'csv_path': CSV_PATH,
'predict_t': PREDICT_T,
'borders': borders,
'mae_errors_borders': mae_errors_borders,
'r_RMSE_errors_borders': r_RMSE_errors_borders
}
utils.save_pickle_dict(path=SAVE_BORDERS_ERROR, name=MODEL_PATH.split('/')[-1][:-17], dict_=dict_values)
print('Dict with error values saved.')
del model
if GENERATE_ERROR_MAP:
fig_name = os.path.join(SAVE_IMAGES_PATH, 'RMSE_pct_maps_together.pdf')
visualization.error_maps_for_5_horizons(
error_maps_list=RMSE_pct_maps_list,
vmax=100,
fig_name=fig_name,
save_fig=True,
colormap='coolwarm'
)
fig_name = os.path.join(SAVE_IMAGES_PATH, 'MAE_maps_together.pdf')
visualization.error_maps_for_5_horizons(
error_maps_list=MAE_maps_list,
vmax=0.3,
fig_name=fig_name,
save_fig=True,
colormap='coolwarm'
)
fig_name = os.path.join(SAVE_IMAGES_PATH, 'RMSE_maps_together.pdf')
visualization.error_maps_for_5_horizons(
error_maps_list=RMSE_maps_list,
vmax=0.3,
fig_name=fig_name,
save_fig=True,
colormap='coolwarm'
)