-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraspberrypi_app.py
109 lines (81 loc) · 3.26 KB
/
raspberrypi_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import joblib
import cv2
import time
import numpy as np
import dlib
import imutils
from imutils import face_utils
from scipy.spatial import distance as dist
from sklearn.preprocessing import MinMaxScaler
import beepy
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('./datasets/dlib/shape_predictor_68_face_landmarks.dat')
model = joblib.load('./models/landmarks/rfgrid.pkl')
def get_landmarks_ratios(frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces
faces = detector(gray)
if len(faces) == 0:
return None
# get the largest face
largest_face = None;
for face in faces:
largest_face_area = 0;
if face.area() > largest_face_area:
largest_face = face
shape = predictor(gray, largest_face)
#print the face rectangle
x_ini, y_ini, x_fin, y_fin = largest_face.left(), largest_face.top(), largest_face.right(), largest_face.bottom()
cv2.rectangle(frame, (x_ini, y_ini), (x_fin, y_fin), (0, 255, 0), 1)
# Extracting the indices of the facial features
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["inner_mouth"]
# Get coordinates for left eye, right eye, and mouth
left_eye = [(shape.part(i).x, shape.part(i).y) for i in range(lStart, lEnd)]
right_eye = [(shape.part(i).x, shape.part(i).y) for i in range(rStart, rEnd)]
mouth = [(shape.part(i).x, shape.part(i).y) for i in range(mStart, mEnd)]
# Compute aspect ratios for the eyes and mouth
def eye_aspect_ratio(eye):
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
C = dist.euclidean(eye[0], eye[3])
ear = (A + B) / (2.0 * C)
return ear
def mouth_aspect_ratio(mouth):
A = dist.euclidean(mouth[2], mouth[6])
C = dist.euclidean(mouth[0], mouth[4])
mar = A / C
return mar
left_ear = eye_aspect_ratio(left_eye)
right_ear = eye_aspect_ratio(right_eye)
mouth_ar = mouth_aspect_ratio(mouth)
return [left_ear, right_ear, mouth_ar], frame
import cv2
cap = cv2.VideoCapture(0)
frame_count = 0
start_time = time.time()
font_size = 0.5
while True:
ret, frame = cap.read()
frame = imutils.resize(frame, width=640)
frame_count += 1
frame_height = frame.shape[0]
output = get_landmarks_ratios(frame)
if output is not None:
ratios, frame = output
features = np.array(ratios)
features = features.reshape(1, -1)
predictions = model.predict(features)
status = 'Awake' if predictions[0] else 'Drowsy'
cv2.putText(frame, status, (10,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
ratiosr = [round(ratio, 2) for ratio in ratios]
cv2.putText(frame, f'Ratios: {ratiosr}', (10, frame_height - 40), cv2.FONT_HERSHEY_SIMPLEX, font_size, (0, 255, 0), 2)
elapsed_time = time.time() - start_time
fps = frame_count / elapsed_time
cv2.putText(frame, 'FPS: {:.2f}'.format(fps), (10, frame_height - 20), cv2.FONT_HERSHEY_SIMPLEX, font_size, (0, 255, 0), 2)
cv2.imshow('Webcam Output', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()