-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnlp_classifier.py
209 lines (163 loc) · 7.28 KB
/
nlp_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import itertools
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import spacy
import tqdm
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
import keras
from keras.layers import Input, Dense, Dropout, Lambda, Flatten, Concatenate
from keras.models import Model
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from keras.utils import to_categorical
will_use_gpu = spacy.prefer_gpu()
print(f"spaCy will use gpu: {will_use_gpu}")
# %%
# Data - load and explore
df_train = pd.read_csv("input/train.csv")
df_test = pd.read_csv("input/test.csv")
# %%
# Questions - extract texts
MAX_SEQUENCE_LENGTH = 60
BATCH_SIZE = 512
Q_FRACTION = 1
questions = df_train.sample(frac=Q_FRACTION)
question_texts = questions["question_text"].values
question_targets = questions["target"].values
print(f"Working on {len(questions)} questions")
# %% NLP tools
nlp = spacy.load("en_core_web_sm", disable=['parser'])
nlp.add_pipe(nlp.create_pipe('sentencizer'))
print(f"spaCy pipes: {nlp.pipe_names}")
# %%
# Find POS and NER tags
# Entity types from https://spacy.io/api/annotation#named-entities
pos_tags = nlp.tokenizer.vocab.morphology.tag_map.keys()
pos_tags_count = len(pos_tags)
entity_types = ["PERSON", "NORP", "FAC", "ORG", "LOC", "PRODUCT", "EVENT", "WORK_OF_ART", "LAW", "LANGUAGE", "DATE",
"TIME", "PERCENT", "MONEY", "QUANTITY", "ORDINAL", "CARDINAL"]
entity_types_count = len(entity_types)
pos_tokenizer = Tokenizer(num_words=pos_tags_count, lower=False)
pos_tokenizer.fit_on_texts(pos_tags)
default_filter_without_underscore = '!"#$%&()*+,-./:;<=>?@[\]^`{|}~'
entity_tokenizer = Tokenizer(num_words=entity_types_count, lower=False, oov_token='0',
filters=default_filter_without_underscore)
entity_tokenizer.fit_on_texts(list(entity_types))
entity_types_count = len(entity_tokenizer.index_word) + 1
def token_encoded_pos_getter(token):
if token.tag_ in pos_tokenizer.word_index:
return pos_tokenizer.word_index[token.tag_]
else:
return 0
def token_encoded_ent_getter(token):
if token.ent_type_ in entity_tokenizer.word_index:
return entity_tokenizer.word_index[token.ent_type_]
else:
return 0
spacy.tokens.token.Token.set_extension('encoded_pos', force=True, getter=token_encoded_pos_getter)
spacy.tokens.token.Token.set_extension('encoded_ent', force=True, getter=token_encoded_ent_getter)
spacy.tokens.doc.Doc.set_extension('encoded_pos', force=True, getter=lambda doc: [token._.encoded_pos for token in doc])
spacy.tokens.doc.Doc.set_extension('encoded_ent', force=True, getter=lambda doc: [token._.encoded_ent for token in doc])
def make_encoded_nlp_features():
'''
A simple greedy function that generates one-hot encodings for the NLP features of each word in each question.
'''
pos_encodings = []
ent_encodings = []
for doc in tqdm.tqdm(nlp.pipe(question_texts, batch_size=100, n_threads=4), total=len(question_texts)):
pos_encodings.append(doc._.encoded_pos)
ent_encodings.append(doc._.encoded_ent)
pos_encodings = np.array(pos_encodings)
pos_encodings = pad_sequences(pos_encodings, maxlen=MAX_SEQUENCE_LENGTH)
# pos_encodings = to_categorical(pos_encodings, num_classes=pos_tags_count)
# print(pos_encodings)
ent_encodings = np.array(ent_encodings)
ent_encodings = pad_sequences(ent_encodings, maxlen=MAX_SEQUENCE_LENGTH)
# ent_encodings = to_categorical(ent_encodings, num_classes=entity_types_count)
# print(ent_encodings)
return pos_encodings, ent_encodings
def generate_encoded_nlp_features():
'''
This function splits the original question texts in batches, iterates over them and for each generates a pair of
one-hot-encoded POS tags and Named Entities. It finaly yields that pair.
It's main goal is to be a more memory efficient version of the original function that works with the whole dataset.
Of course, this requires additional cooperation, e.g. the keras Model has a `fit_generator` version of the fit
method
'''
batches = spacy.util.minibatch(items=zip(question_texts, question_targets), size=BATCH_SIZE)
batches = [b for b in batches]
for repeatable_batches in itertools.repeat(batches):
for batch in repeatable_batches:
texts = []
targets = []
for b in batch:
texts.append(b[0])
targets.append(b[1])
pos_encodings = []
ent_encodings = []
for doc in nlp.pipe(texts, batch_size=BATCH_SIZE, n_threads=2):
pos_encodings.append(doc._.encoded_pos)
ent_encodings.append(doc._.encoded_ent)
pos_encodings = np.array(pos_encodings)
pos_encodings = pad_sequences(pos_encodings, maxlen=MAX_SEQUENCE_LENGTH)
# pos_encodings = to_categorical(pos_encodings, num_classes=pos_tags_count)
# print(pos_encodings)
ent_encodings = np.array(ent_encodings)
ent_encodings = pad_sequences(ent_encodings, maxlen=MAX_SEQUENCE_LENGTH)
# ent_encodings = to_categorical(ent_encodings, num_classes=entity_types_count)
# print(ent_encodings)
targets_batch = np.array(targets)
yield [pos_encodings, ent_encodings], targets_batch
# %%
# Model and evaluation
def display_model_history(history):
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper right')
plt.show()
# %%
def make_simple_dnn_model():
ent_input = Input(shape=(MAX_SEQUENCE_LENGTH,), name="ent_input", dtype='uint8')
x_ent = Lambda(
keras.backend.one_hot,
arguments={"num_classes": entity_types_count},
output_shape = (MAX_SEQUENCE_LENGTH, entity_types_count))(ent_input)
x_ent = Flatten()(x_ent)
# x_ent = Dense(100)(x_ent)
# x_ent = Dropout(0.5)(x_ent)
x_ent = Dense(10)(x_ent)
pos_input = Input(shape=(MAX_SEQUENCE_LENGTH,), name="pos_input", dtype='uint8')
x_pos = Lambda(
keras.backend.one_hot,
arguments={"num_classes": pos_tags_count},
output_shape = (MAX_SEQUENCE_LENGTH, pos_tags_count))(pos_input)
x_pos = Flatten()(x_pos)
# x_pos = Dense(300)(x_pos)
# x_pos = Dropout(0.5)(x_pos)
x_pos = Dense(20)(x_pos)
x = Concatenate()([x_ent, x_pos])
x = Dropout(0.5)(x)
x = Dense(20)(x)
out = Dense(1, activation="sigmoid")(x)
model = Model(inputs=[pos_input, ent_input], outputs=out)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
return model
model = make_simple_dnn_model()
(pos_encodings, ent_encodings) = make_encoded_nlp_features()
history = model.fit(
x={"pos_input": pos_encodings, "ent_input": ent_encodings},
y=question_targets,
batch_size=512, epochs=10, verbose=1, validation_split=0.015)
display_model_history(history)
# nlp_features_generator = generate_encoded_nlp_features()
# history = model.fit_generator(nlp_features_generator,
# steps_per_epoch=len(question_texts)//BATCH_SIZE,
# epochs=3,
# use_multiprocessing=False)
# display_model_history(history)