-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdynamic_fixed_point.py
448 lines (343 loc) · 14.5 KB
/
dynamic_fixed_point.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import tensorflow as tf
import numpy as np
def quantize(X, target_overflow_rate, bits, step, training, stochastic=False):
assert 1 <= bits <= 32, 'invalid value for bits: %d' % bits
if bits == 32:
return X
limit = 2.0 ** (bits - 1)
X = tf.cast(X, dtype=tf.float32)
@tf.custom_gradient
def identity(X):
X = tf.floor(tf.clip_by_value(X / step, -limit, limit-1) + 0.5001) * step
return X, lambda dy : dy
if training:
step_update = update_step(X, target_overflow_rate, bits, step)
return identity(X), step_update
else:
return identity(X), step
def quantize_back(X, target_overflow_rate, bits, step, training, stochastic=True):
assert 1 <= bits <= 32, 'invalid value for bits: %d' % bits
if bits == 32:
return X
limit = 2.0 ** (bits - 1)
X = tf.cast(X, dtype=tf.float32)
@tf.custom_gradient
def stochastic_identity(X):
return X, lambda dy : tf.floor(tf.clip_by_value(dy / step, -limit, limit-1) + 0.5) * step
if training:
step_update = update_step(X, target_overflow_rate, bits, step)
return stochastic_identity(X), step_update
else:
return stochastic_identity(X), step
def overflow_rate(X, bits, step):
limit = 2.0 ** (bits - 1)
X = X / step
mask_X = tf.cast(tf.greater_equal(X, limit), tf.float32) + \
tf.cast(tf.less(X, tf.negative(limit)), tf.float32)
mask_2X = tf.cast(tf.greater_equal(X, limit/2), tf.float32) + \
tf.cast(tf.less(X, tf.negative(limit/2)), tf.float32)
return tf.reduce_mean(mask_X), tf.reduce_mean(mask_2X)
def update_step(X, target_overflow_rate, bits, step):
overflow_X, overflow_2X = overflow_rate(X, bits, step)
multiplier = tf.cond(
overflow_X > target_overflow_rate,
lambda : 2.0,
lambda : tf.cond(
overflow_2X <= target_overflow_rate,
lambda : 0.5,
lambda : 1.0,
)
)
return step * multiplier
class Layer_q:
'''
Base class for quantized layers.
'''
def forward(self, X):
'''
Default forward propagation.
'''
self.X = X
self.y = self.X
return self.y
def info(self):
'''
Returns a one-line description for a quantized layer.
'''
return 'quantized layer (default identity)'
class Conv2d_q(Layer_q):
def __init__(self, name, bits, training, ksize, strides, padding, use_bias=False,
weight_decay=0, target_overflow_rate=0):
h, w, Cin, Cout = self.ksize = ksize
self.strides = strides
self.padding = padding
in_units = h * w * Cin
limit = (6 / in_units) ** 0.5
self.name = name
self.train = training
self.use_bias = use_bias
step = 2.0 ** -5
def weight_variable1(h, w, Cin, Cout):
data = open("weight.txt", 'r')
imgs = []
lines = data.readlines()
num = 0
for line in lines:
for db in line.split():
imgs.append(float(db))
num += 1
if num == h * w * Cin * Cout:
break
x = np.array(imgs).astype(np.float32)
tx = tf.convert_to_tensor(x)
initial = tf.reshape(tx, [h, w, Cin, Cout])
return tf.Variable(initial)
with tf.variable_scope(self.name):
self.W = weight_variable1(h, w, Cin, Cout)
self.W_step = tf.get_variable('W_step', initializer=step, trainable=False)
self.X_step = tf.get_variable('X_step', initializer=step, trainable=False)
self.grad_step = tf.get_variable('grad_step', initializer=step, trainable=False)
if self.use_bias:
self.b = tf.get_variable('b', [1, 1, 1, Cout], initializer=tf.zeros_initializer())
self.b_step = tf.get_variable('b_step', initializer=step, trainable=False)
self.bits = bits
self.target_overflow_rate = target_overflow_rate
self.weight_decay = weight_decay
def forward(self, X):
self.X = X
self.Xq, self.X_step = quantize(self.X, self.target_overflow_rate,
self.bits, self.X_step, self.train)
self.Wq, self.W_step = quantize(self.W, self.target_overflow_rate,
self.bits, self.W_step, self.train)
self.y = tf.nn.conv2d(self.X, self.W, self.strides, self.padding)
if self.use_bias:
self.bq, self.b_step = quantize(self.b, self.target_overflow_rate,
self.bits, self.b_step, self.train)
self.y = self.y + self.b
#self.y, self.grad_step = quantize_back(self.y, self.target_overflow_rate,
#self.bits, self.grad_step, self.train)
return self.y, self.X, self.W
def info(self):
return '%d bits conv2d: %dx%dx%d stride %dx%d pad %s weight_decay %f' % (
self.bits, self.ksize[0], self.ksize[1], self.ksize[2],
self.strides[1], self.strides[2], self.padding, self.weight_decay)
class Dense_q(Layer_q):
def __init__(self, name, bits, training, in_units, units, use_bias=True, weight_decay=0, target_overflow_rate=0):
limit = (6 / (in_units + units)) ** 0.5
self.name = name
self.train = training
self.use_bias = use_bias
step = 2.0 ** -5
def weight_variable2(shape):
data = open("weight.txt", 'r')
imgs = []
lines = data.readlines()
num = 0
for line in lines:
for db in line.split():
imgs.append(float(db))
num += 1
if num == shape:
break
x = np.array(imgs).astype(np.float32)
tx = tf.convert_to_tensor(x)
initial = tf.reshape(tx, [12*12*20, 100])
return tf.Variable(initial)
def weight_variable3(shape):
data = open("weight.txt", 'r')
imgs = []
lines = data.readlines()
num = 0
for line in lines:
for db in line.split():
imgs.append(float(db))
num += 1
if num == shape:
break
x = np.array(imgs).astype(np.float32)
tx = tf.convert_to_tensor(x)
initial = tf.reshape(tx, [64, 10])
return tf.Variable(initial)
with tf.variable_scope(self.name):
if units == 100:
self.W = weight_variable2(12 * 12 * 20 * 100)
else:
self.W = weight_variable3(64 * 10)
self.W_step = tf.get_variable('W_step', initializer=step, trainable=False)
self.X_step = tf.get_variable('X_step', initializer=step, trainable=False)
self.grad_step = tf.get_variable('grad_step', initializer=step, trainable=False)
if self.use_bias:
self.b = tf.Variable(tf.constant(0.01, shape=[units]))
self.b_step = tf.get_variable('b_step', initializer=step, trainable=False)
self.bits = bits
self.target_overflow_rate = target_overflow_rate
self.weight_decay = weight_decay
def forward(self, X):
self.X = X
self.Xq, self.X_step = quantize(self.X, self.target_overflow_rate,
self.bits, self.X_step, self.train)
self.Wq, self.W_step = quantize(self.W, self.target_overflow_rate,
self.bits, self.W_step, self.train)
self.y = tf.matmul(self.X, self.W)
if self.use_bias:
self.bq, self.b_step = quantize(self.b, self.target_overflow_rate,
self.bits, self.b_step, self.train)
self.y = self.y + self.b
#self.y, self.grad_step = quantize_back(self.y, self.target_overflow_rate,
#self.bits, self.grad_step, self.train)
return self.y, self.W
def info(self):
return '%d bits dense: %dx%d weight_decay %f' % (
self.bits, self.W.shape[0], self.W.shape[1], self.weight_decay)
class Sequential_q(Layer_q):
def __init__(self, *args):
self.layers = args
def forward(self, X):
self.X = X
for layer in self.layers:
X = layer.forward(X)
self.y = X
return self.y
def info(self):
return '\n\t'.join(['Sequential layer:'] +
[layer.info() for layer in self.layers])
class Normalization_q(Layer_q):
def __init__(self, name, bits, num_features, training, momentum=0.9, eps=1e-5, target_overflow_rate=0):
self.name = name
self.train = training
step = 2.0 ** -5
with tf.variable_scope(self.name):
self.X_step = tf.get_variable('X_step', initializer=step, trainable=False)
self.grad_step = tf.get_variable('grad_step', initializer=step, trainable=False)
self.X_mean_running = tf.get_variable('X_mean_running', [1, 1, 1, num_features],
initializer=tf.zeros_initializer())
self.X_var_running = tf.get_variable('X_var_running', [1, 1, 1, num_features],
initializer=tf.ones_initializer())
self.eps = eps
self.momentum = momentum
self.bits = bits
self.target_overflow_rate = target_overflow_rate
def forward(self, X):
self.X = X
self.Xq, self.X_step = quantize(self.X, self.target_overflow_rate,
self.bits, self.X_step, self.train)
rank = X._rank()
if rank == 2:
self.X = tf.expand_dims(self.X, -1)
self.X = tf.expand_dims(self.X, -1)
elif rank == 4:
pass
else:
assert False, 'Invalid rank %d' % rank
self.X_mean_batch, self.X_var_batch = tf.nn.moments(self.X, axes=[0, 1, 2], keep_dims=True)
if self.train:
self.X_mean = self.X_mean_batch
self.X_var = self.X_var_batch
def update_op(average, variable, momentum):
return tf.assign(average, momentum * average + (1-momentum) * variable)
mean_update_op = update_op(self.X_mean_running, self.X_mean_batch, self.momentum)
var_update_op = update_op(self.X_var_running, self.X_var_batch, self.momentum)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, mean_update_op)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, var_update_op)
else:
self.X_mean = self.X_mean_running
self.X_var = self.X_var_running
self.y = (self.X - self.X_mean) / ((self.X_var + self.eps) ** 0.5)
#self.y, self.grad_step = quantize_back(self.y, self.target_overflow_rate,
#self.bits, self.grad_step, self.train)
return self.y
class Rescale_q(Layer_q):
def __init__(self, name, bits, training, num_features, use_beta=True, weight_decay=0,
target_overflow_rate=0, gamma_initializer=None):
self.name = name
self.train = training
self.use_beta = use_beta
step = 2 ** -5
with tf.variable_scope(self.name):
self.gamma = tf.Variable(tf.constant(0.35, shape=[1, 1, 1, num_features]))
self.g_step = tf.get_variable('g_step', initializer=step, trainable=False)
self.X_step = tf.get_variable('X_step', initializer=step, trainable=False)
self.grad_step = tf.get_variable('grad_step', initializer=step, trainable=False)
if self.use_beta:
self.beta = tf.Variable(tf.constant(0.05, shape=[1, 1, 1, num_features]))
self.b_step = tf.get_variable('b_step', initializer=step, trainable=False)
self.bits = bits
self.target_overflow_rate = target_overflow_rate
self.weight_decay = weight_decay
def forward(self, X):
self.X = X
rank = X._rank()
if rank == 2:
self.X = tf.expand_dims(self.X, -1)
self.X = tf.expand_dims(self.X, -1)
elif rank == 4:
pass
else:
assert False, 'Invalid rank %d' % rank
self.Xq, self.X_step = quantize(self.X, self.target_overflow_rate,
self.bits, self.X_step, self.train)
self.gq, self.g_step = quantize(self.gamma, self.target_overflow_rate,
self.bits, self.g_step, self.train)
self.y = self.X * self.gamma
if self.use_beta:
self.bq, self.b_step = quantize(self.beta, self.target_overflow_rate,
self.bits, self.b_step, self.train)
self.y = self.y + self.beta
#self.y, self.grad_step = quantize_back(self.y, self.target_overflow_rate,
# self.bits, self.grad_step, self.train)
return self.y, self.gamma, self.beta
class BatchNorm_q(Sequential_q):
def __init__(self, name, bits, num_features, training, momentum=0.9, eps=1e-5,
use_beta=True, weight_decay=0, target_overflow_rate=0, gamma_initializer=None):
self.bits = bits
super().__init__(
Normalization_q(
name=name+'-norm',
bits=self.bits,
num_features=num_features,
training=training,
momentum=momentum,
eps=eps,
target_overflow_rate=target_overflow_rate,
),
Rescale_q(
name=name+'-rescale',
bits=self.bits,
training=training,
num_features=num_features,
use_beta=use_beta,
weight_decay=weight_decay,
target_overflow_rate=target_overflow_rate,
gamma_initializer=gamma_initializer,
)
)
def info(self):
return '%d bits BatchNorm' % self.bits
class ReLU_q(Layer_q):
def forward(self, X):
self.X = X
self.y = tf.maximum(0.0, self.X)
return self.y
def info(self):
return 'ReLU'
class AvgPool_q(Layer_q):
def __init__(self, ksize, strides, padding):
self.ksize = ksize
self.strides = strides
self.padding = padding
def forward(self, X):
self.X = X
self.y = tf.nn.avg_pool(self.X, self.ksize, self.strides, self.padding)
return self.y
def info(self):
return 'avg pool: %dx%d stride %dx%d' % (
self.ksize[1], self.ksize[2], self.strides[1], self.strides[2])
class Flatten_q(Layer_q):
def __init__(self, dim):
self.dim = dim
def forward(self, X):
self.X = X
self.y = tf.reshape(X, [-1, self.dim])
return self.y
def info(self):
return 'flatten'