forked from Santara/deeptesla
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_ordered.py
96 lines (77 loc) · 2.87 KB
/
data_ordered.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
from __future__ import division
import random
import os
import sys
from collections import OrderedDict
import cv2
import params
import preprocess
import local_common as cm
################ parameters ###############
data_dir = params.data_dir
batch_size = params.batch_size
epochs = params.epochs
img_height = params.img_height
img_width = params.img_width
img_channels = params.img_channels
############### building the batch definitions ###############
purposes = ['train', 'val']
batches = OrderedDict()
for purpose in purposes:
batches[purpose] = []
# determine the epoch_id, frame_start, frame_end
for purpose in epochs.keys():
assert len(epochs[purpose]) > 0
for epoch_id in epochs[purpose]:
vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
assert os.path.isfile(vid_path)
frame_count = cm.frame_count(vid_path)
assert batch_size <= frame_count
batch_count = int(frame_count / batch_size)
assert batch_count >= 1
for b in xrange(batch_count):
assert purpose in batches
frame_start = b * batch_size
frame_end = frame_start + batch_size - 1
assert frame_end < frame_count
batches[purpose].append(OrderedDict([
('epoch_id', epoch_id),
('frame_start', frame_start),
('frame_end', frame_end),
]))
current_batch_id = OrderedDict()
for purpose in purposes:
current_batch_id[purpose] = 0
def load_batch(purpose):
global current_batch_id
xx = []
yy = []
# fetch the batch definition
batch_id = current_batch_id[purpose]
assert batch_id < len(batches[purpose])
batch = batches[purpose][batch_id]
epoch_id, frame_start, frame_end = batch['epoch_id'], batch['frame_start'], batch['frame_end']
assert epoch_id is not None and frame_start is not None and frame_end is not None
# update the current batch
current_batch_id[purpose] = (current_batch_id[purpose] + 1) % len(batches[purpose])
# fetch image and steering data
vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
assert os.path.isfile(vid_path)
frame_count = cm.frame_count(vid_path)
cap = cv2.VideoCapture(vid_path)
cm.cv2_goto_frame(cap, frame_start)
csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id))
assert os.path.isfile(csv_path)
rows = cm.fetch_csv_data(csv_path)
assert frame_count == len(rows)
yy = [[float(row['wheel'])] for row in rows[frame_start:frame_end+1]]
for frame_id in xrange(frame_start, frame_end+1):
ret, img = cap.read()
assert ret
img = preprocess.preprocess(img)
#cv2.imwrite(os.path.abspath('output/sample_frame.jpg'), img)
xx.append(img)
assert len(xx) == len(yy)
cap.release()
return xx, yy