-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__main__.py
328 lines (268 loc) · 16.2 KB
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from typing import Any,List
import json
import argparse
import torch
import re
from model import ToyGPT
from data import HFCollectionMultiTaskDataModule
from transformers import GPT2TokenizerFast,PreTrainedTokenizer
import lightning as L
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
from lightning.pytorch.callbacks.model_checkpoint import ModelCheckpoint
from lightning.pytorch.loggers import WandbLogger, TensorBoardLogger
import wandb
import os
DATASET_CONFIG_CACHE_PATH = '.datasets.json'
def get_checkpoint_path(model_name:str, tasks:List[str]):
return os.path.join('checkpoints', model_name, '_'.join(tasks))
def get_last_file(dir_path: str) -> str:
files = [os.path.join(dir_path,fname) for fname in os.listdir(dir_path)]
files.sort(key=lambda x: os.path.getatime(x), reverse=True)
if files:
return files[0]
else:
return None
def get_tokenizer() -> PreTrainedTokenizer:
tokenizer: PreTrainedTokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
tokenizer.add_special_tokens({"pad_token": "<pad>",
"mask_token": "<msk>",
"cls_token": "<cls>",
"sep_token": "<sep>",
"bos_token":"<|startoftext|>",
"eos_token":"<|endoftext|>",}) # special
return tokenizer
def get_device() -> Any:
# will use GPU whenever it's available
return torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def get_config(path):
with open(path) as fp:
return json.load(fp)
def get_dtype(precision) -> torch.dtype:
if precision == '16-true':
return torch.float16
if precision == 'bf16-true':
return torch.bfloat16
if precision == '16-mixed':
return torch.float
if precision == 'bf16-mixed':
return torch.float
if precision == '32-true':
return torch.float
def get_steps(model_name: str) -> int:
# Extract the offset value
offset_match = re.search(r"offset=(\d+)", model_name)
offset = int(offset_match.group(1)) if offset_match else 0 # Default to 0 if not found
# Extract the step number
step_match = re.search(r"step=(\d+)", model_name)
step = int(step_match.group(1)) if step_match else 0 # Default to 0 if not found
# Calculate the total offset
total_offset = offset + step
return total_offset
def train(args):
device = get_device()
print(f'Args => {args}')
print(f"training will be performed on {device}")
configs = get_config(args.config)
config = configs[0]
torch.set_float32_matmul_precision('medium')
with open(args.src) as src, open(DATASET_CONFIG_CACHE_PATH, 'wt+') as dst:
dataset_configs = json.load(src)
json.dump(dataset_configs, dst)
assert dataset_configs is not None
# initialize wandb
if args.wnb:
wandb.login()
wandb.init(project="mlm_clm", config={
"batch_size": args.batch,
"learning_rate": args.lr,
**config
})
logger = WandbLogger(name='mlm_clm',version='0.1.0',log_model="all")
else:
logger = TensorBoardLogger('tf_logs')
tokenizer: PreTrainedTokenizer = get_tokenizer()
vocab_size = len(tokenizer)
cpu_count = (os.cpu_count() - 1)
dataset = HFCollectionMultiTaskDataModule(tokenizer,
paths=[dataset['name'] for dataset in dataset_configs],
subsets=[
dataset['subset'] for dataset in dataset_configs
],
columns=[
dataset['column'] for dataset in dataset_configs
],
tasks=args.tasks,
cache_dir=args.cache,
max_length=config['block_size'],
num_proc=cpu_count,
batch_size=args.batch, train_size=0.99)
dataset.prepare_data()
train_steps, _ = dataset.setup()
print(f'total train steps : {train_steps}')
dtype = get_dtype(args.precision)
print(f"tokenizer: {tokenizer} / vocab_size {vocab_size} / pad_id:{tokenizer.pad_token_id}, {tokenizer.pad_token}")
model = ToyGPT(vocab_size=vocab_size,
pad_token_id=tokenizer.pad_token_id, dtype=dtype, device=device,
p_dropout=0.1, weight_decay=args.wd, lr=args.lr, batch=args.batch,
**config)
trainer = L.Trainer(max_epochs=1, precision=args.precision, max_steps=train_steps, callbacks=[
EarlyStopping(monitor='val_loss', mode='min', patience=10),
ModelCheckpoint(get_checkpoint_path(model.__class__.__name__, args.tasks), monitor='val_loss', mode='min',filename='model-offset=0-{step}-{val_loss:.3f}', save_top_k=2, save_last=True)
], val_check_interval=0.01, logger=logger)
trainer.fit(model,
train_dataloaders=dataset.train_dataloader(),
val_dataloaders=dataset.val_dataloader())
if args.wnb:
wandb.finish(0)
def process(args):
config = get_config(args.config)
with open(args.src) as src:
dataset_configs = json.load(src)
assert dataset_configs is not None
tokenizer = get_tokenizer()
cpu_count = (os.cpu_count() - 1)
dataset = HFCollectionMultiTaskDataModule(tokenizer,
paths=[dataset['name'] for dataset in dataset_configs],
subsets=[
dataset['subset'] for dataset in dataset_configs
],
columns=[
dataset['column'] for dataset in dataset_configs
],
tasks=args.tasks,
cache_dir=args.cache,
num_proc=cpu_count,
max_length=config['block_size'],
batch_size=args.batch, train_size=0.99)
dataset.prepare_data()
def resume(args):
print(f'Args => {args}')
tokenizer = get_tokenizer()
device = get_device()
print(f"training will be performed on {device}")
torch.set_float32_matmul_precision('medium')
last_ckpt_name = get_last_file(get_checkpoint_path(ToyGPT.__name__, args.tasks))
step_offset = get_steps(last_ckpt_name)
model = ToyGPT.load_from_checkpoint(last_ckpt_name, device=device)
with open(DATASET_CONFIG_CACHE_PATH) as src:
dataset_configs = json.load(src)
assert dataset_configs is not None
if args.wnb:
wandb.init(project="mlm_clm")
logger = WandbLogger(name='mlm_clm',version='0.1.0',log_model="all")
else:
logger = TensorBoardLogger('tf_logs')
print(model.hparams)
batch_size = model.hparams['batch']
block_size = model.hparams['block_size']
print(f"resusmed state : {last_ckpt_name} (steps: {step_offset})")
print(f"hparam: \n {model.hparams})")
cpu_count = (os.cpu_count() - 1)
dataset = HFCollectionMultiTaskDataModule(tokenizer,
paths=[dataset['name'] for dataset in dataset_configs],
subsets=[
dataset['subset'] for dataset in dataset_configs
],
columns=[
dataset['column'] for dataset in dataset_configs
],
tasks=args.tasks,
cache_dir=args.cache,
max_length=block_size,
num_proc=cpu_count,
batch_size=batch_size, train_size=0.99)
dataset.prepare_data()
train_steps, _ = dataset.setup()
print(f'total train steps : {train_steps}')
trainer = L.Trainer(max_epochs=1, max_steps=train_steps, precision=args.precision, callbacks=[
EarlyStopping(monitor='val_loss', mode='min', patience=10),
ModelCheckpoint(get_checkpoint_path(model.__class__.__name__, args.tasks), monitor='val_loss', mode='min',filename=f"model-offset={step_offset}" + '-{step}-{val_loss:.3f}', save_top_k=2, save_last=True)
],val_check_interval=0.01, logger=logger)
trainer.fit(model, train_dataloaders=dataset.train_dataloader(), val_dataloaders=dataset.val_dataloader(), ckpt_path='last')
if args.wnb:
wandb.finish()
def apply_repeat_penalty(logits:torch.Tensor, input_ids, penalty_factor):
new_ids = logits.argmax(dim=-1)
for i, (new_id, seq) in enumerate(zip(new_ids, input_ids)):
if new_id in seq:
logits[i, new_id] *= penalty_factor
return logits
def generate(args):
device = get_device()
tokenizer = get_tokenizer()
if args.model is None:
model_checkpoint = get_last_file(get_checkpoint_path(ToyGPT.__name__, args.tasks))
else:
model_checkpoint = args.model
model = ToyGPT.load_from_checkpoint(model_checkpoint, device=device)
model.eval()
prompt = f"{tokenizer.bos_token}{args.prompt}"
input = tokenizer(prompt, return_attention_mask=True, return_tensors="pt").to(device)
for _ in range(300):
input_ids = input["input_ids"]
logits = model(input) # Assuming the model returns logits
if args.repeat_penalty:
logits = apply_repeat_penalty(logits=logits, input_ids=input_ids, penalty_factor=1/pow(10, args.repeat_penalty))
next_token_id = torch.argmax(logits, dim=-1).item() # Get the most probable next token ID
if next_token_id == tokenizer.eos_token_id:
break
new_input_ids = torch.cat((input_ids, torch.tensor([[next_token_id]], device=device)), dim=1)
new_attention_mask = torch.ones((1, new_input_ids.shape[-1]), device=device)
input = {"input_ids": new_input_ids, "attention_mask": new_attention_mask}
generated_text = tokenizer.decode(input['input_ids'][0], skip_special_tokens=True)
print(generated_text)
if __name__ == '__main__':
arg_parser = argparse.ArgumentParser('__main__.py')
arg_parser.set_defaults(func= lambda _: arg_parser.print_help())
sub_parser = arg_parser.add_subparsers()
train_parser = sub_parser.add_parser('train', help='train model')
train_parser.set_defaults(func=train)
train_parser.add_argument('-c', '--config', type=str, default='config.json', help='configuration file for training')
train_parser.add_argument('-b', '--batch', type=int, default=4, help='batch_size for training')
train_parser.add_argument('-r', '--lr', type=float, default=2.5e-4, help='learning rate')
train_parser.add_argument('-x', '--cache', type=str, help='path to store local training dataset')
train_parser.add_argument('-d', '--wd', type=float, default=0.1, help='weight decay for Adam optimizer')
train_parser.add_argument('-p', '--precision', type=str, default='32-true', help='training precision option')
train_parser.add_argument('-w', '--wnb', type=bool, default=False, help='wandb logging')
train_parser.add_argument('-s', '--src', type=str, default='datasets.json', help='dataset config file')
train_parser.add_argument('-t', '--tasks', choices=['CLM', 'MLM'], nargs='+', default=['CLM'], help="""Specifies the training task(s) to perform. Choose 'CLM' for Causal Language Modeling,
'MLM' for Masked Language Modeling, or both. Causal Language Modeling (CLM) trains the model to predict
the next token in a sequence, useful for generating coherent text. Masked Language Modeling (MLM) trains
the model to predict masked (hidden) tokens within a sequence, enhancing understanding of context and
sentence structure. Specifying both tasks (default) initiates a composite training regime that may
improve overall model performance but requires more computational resources. Use this option to tailor
the training process to specific model requirements or research objectives.""")
resume_parser = sub_parser.add_parser('resume', help='resume training')
resume_parser.add_argument('-i', '--ckpt', required=False, default=None)
resume_parser.add_argument('-c', '--config', type=str, default='config.json', help='configuration file for training')
resume_parser.add_argument('-w', '--wnb', type=bool, default=False, help='wandb logging')
resume_parser.add_argument('-p', '--precision', type=str, default='32-true', help='training precision option')
resume_parser.add_argument('-x', '--cache', type=str, help='path to store local training dataset')
resume_parser.add_argument('-t', '--tasks', choices=['CLM', 'MLM'], nargs='+', default=['CLM', 'MLM'], help="""Specifies the training task(s) to perform. Choose 'CLM' for Causal Language Modeling,
'MLM' for Masked Language Modeling, or both. Causal Language Modeling (CLM) trains the model to predict
the next token in a sequence, useful for generating coherent text. Masked Language Modeling (MLM) trains
the model to predict masked (hidden) tokens within a sequence, enhancing understanding of context and
sentence structure. Specifying both tasks (default) initiates a composite training regime that may
improve overall model performance but requires more computational resources. Use this option to tailor
the training process to specific model requirements or research objectives.""")
resume_parser.set_defaults(func=resume)
generate_parser = sub_parser.add_parser("generate", help='generate text using model')
generate_parser.add_argument('-p', '--prompt', type=str, required=True)
generate_parser.add_argument('-m', '--model', type=str, default=None)
generate_parser.add_argument('-t', '--tasks', choices=['CLM', 'MLM'], nargs='+', default=['CLM', 'MLM'], help="""Specifies the training task(s) to perform. Choose 'CLM' for Causal Language Modeling,
'MLM' for Masked Language Modeling, or both. Causal Language Modeling (CLM) trains the model to predict
the next token in a sequence, useful for generating coherent text. Masked Language Modeling (MLM) trains
the model to predict masked (hidden) tokens within a sequence, enhancing understanding of context and
sentence structure. Specifying both tasks (default) initiates a composite training regime that may
improve overall model performance but requires more computational resources. Use this option to tailor
the training process to specific model requirements or research objectives.""")
generate_parser.add_argument('-r', '--repeat_penalty', type=float, default=1.3)
generate_parser.set_defaults(func=generate)
process_parser = sub_parser.add_parser('preprocess', help='preprocess')
process_parser.add_argument('-c', '--config', type=str, default='config.json', help='configuration file for training')
process_parser.add_argument('-b', '--batch', type=int, default=8, help='batch_size for data processing')
process_parser.add_argument('-x', '--cache', type=str, help='path to store local training dataset')
process_parser.add_argument('-s', '--src', type=str, default='datasets.json', help='dataset config file')
process_parser.set_defaults(func=process)
args = arg_parser.parse_args()
args.func(args)