-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWordsClusterBySynonyms.py
234 lines (193 loc) · 7.19 KB
/
WordsClusterBySynonyms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from time import time
from scipy import sparse
import nltk
from nltk.corpus import wordnet as wn
from sklearn.cluster import DBSCAN
from wordcloud import WordCloud
class WordsClusterBySynonyms:
"""
WordClusterBySynonyms will be able to generate clusters from a dataframe of words. Parameters:
dataframe = input dataframe
name = name of the input columns
lang = languages
n_jobs = number of workers
"""
def __init__(self, dataframe, name, lang='ita', n_jobs=-1):
self.lang = lang
self.dataframe = dataframe
self.name = name
self.n_jobs = n_jobs
self._name_sin = None
self._idx_name = None
self._name_idx = None
self.result = None
self.final = None
self.final_enabler = 0
def _create_mydistance(self, criteria=min):
def mydistance(w1, w2, b):
app_x = b[w1]
app_y = b[w2]
intersect = len(set(app_x) & set(app_y))
try:
x = intersect / criteria(len(app_x), len(app_y))
return (x)
except ZeroDivisionError:
return (0)
return mydistance
def _symmetrize(self, a):
return a + a.T - np.eye(a.shape[0])
######################################################################################################
def get_synonym(self, w):
return (list({
s
for ss in wn.synsets(w, lang=self.lang)
for s in ss.lemma_names(lang=self.lang)
}))
def get_synonyms_pandas(self, dataframe = None, threshold = None):
if dataframe is None:
dataframe = self.dataframe
dataframe['synonym'] = dataframe[self.name].apply(lambda x: self.get_synonym(x))
dataframe['len_syn'] = dataframe.apply(axis=1, func = lambda x: len(x.synonym))
drop = dataframe[dataframe['len_syn'] == 0].shape[0]
if drop > 0:
print("There are {} words with no synonyms".format(drop))
print("I've deleted all of them")
dataframe = dataframe[dataframe['len_syn'] > 0].reset_index(drop=True)
if threshold!= None:
dataframe = dataframe[dataframe['len_syn'] < threshold].reset_index(drop=True)
dataframe = dataframe.drop('len_syn', axis=1)
# _create_group_dict
self._name_sin = dataframe.set_index(self.name).to_dict()['synonym']
self._idx_name = dataframe.to_dict()[self.name]
self._name_idx = {v: k for k, v in self._idx_name.items()}
self.dataframe = dataframe
return dataframe
def plot_hist(self, save=False, name=None, dataframe = None):
if dataframe is None:
dataframe = self.dataframe
dataframe['len_syn'] = dataframe.apply(axis=1, func = lambda x: len(x.synonym))
dataframe = dataframe[dataframe['len_syn'] > 0].reset_index(drop=True)
plt.figure(figsize=(15,3))
plt.title('Histogram of the number of synonyms')
plt.hist(dataframe['len_syn'].values, bins=100)
if save == True:
plt.savefig(name+'.jpg')
plt.show()
def set_threshold(self, threshold, dataframe = None):
if dataframe is None:
dataframe = self.dataframe
dataframe['len_syn'] = dataframe.apply(axis=1, func = lambda x: len(x.synonym))
dataframe = dataframe[dataframe['len_syn'] < threshold].reset_index(drop=True).copy()
dataframe.drop('len_syn', axis=1, inplace=True)
# _create_group_dict
self._name_sin = dataframe.set_index(self.name).to_dict()['synonym']
self._idx_name = dataframe.to_dict()[self.name]
self._name_idx = {v: k for k, v in self._idx_name.items()}
self.dataframe = dataframe
return dataframe
def create_distance_matrix(self,
mydistance=None, criteria=None,
verbose=False):
"""
"""
if criteria == None:
criteria = min
if mydistance == None:
mydistance = self._create_mydistance(criteria=criteria)
start_time = time()
app = 0
row, col, data = [], [], []
tot = len(self._idx_name)
for i in range(0, tot):
for j in range(i, tot):
distance = mydistance(self._idx_name[i], self._idx_name[j], self._name_sin)
if distance != 0:
row.append(i)
col.append(j)
data.append(distance)
app += 1
if verbose == True:
"Computation is started..."
if i == 100:
print('First ' + str(i) + ' worked in ' +
str(round((time() - start_time) / 60, 2)) +
' minutes')
print('I should finish in ' + str(
round((time() - start_time) / 60 * len(self._name_sin) /
100, 2)) + ' minutes')
matrixd = self._symmetrize(
sparse.csr_matrix((data, (row, col))).todense())
print("Computation ended")
return 1 - matrixd
def run_cluster(self, eps, min_samples, distance_matrix):
db = DBSCAN(
eps=eps, min_samples=min_samples, metric='precomputed', n_jobs=self.n_jobs).fit(distance_matrix)
self.result = db
return db
def plot_eps_ncluster(self, distance_matrix, start=0.01, stop=1, ntot=25, min_samples=5, save=False, name=None):
x = np.linspace(start, stop, ntot)
res = [self.run_cluster(eps, min_samples, distance_matrix) for eps in x]
y = np.array(
[len(set(res[i].labels_)) for i in range(0,len(res))])
y2 = np.array(
[(res[i].labels_ == -1).sum() for i in range(0,len(res))])
plt.figure(figsize=(15,3))
plt.plot(x, y)
plt.xlabel('eps')
plt.ylabel('Number of clusters')
if save == True:
plt.savefig(name+'_clusters.jpg')
plt.show()
plt.figure(figsize=(15,3))
plt.plot(x, y2, color='red')
plt.xlabel('eps')
plt.ylabel('Number of words not clustered')
if save == True:
plt.savefig(name+'_not_clustered.jpg')
plt.show()
def get_labeled_pandas(self, dataframe=None, drop = True, reset_index=False):
if dataframe is None:
dataframe = self.dataframe
temp = self.get_synonyms_pandas()
if self.result==None:
print("run run_cluster before then get_labeled_pandas")
return
dataframe = pd.concat([temp ,pd.DataFrame(self.result.labels_)],axis=1)
dataframe.columns = list(temp.columns) + ['label']
if drop == True:
dataframe = dataframe[dataframe['label']!=-1]
if reset_index==True:
dataframe.reset_index(drop=True, inplace=True)
self.final = dataframe
self.final_enabler = 1
return self.final
def plot_cluster_k(self, distance_matrix, word, background_color='white', save=False, name=None):
if self.final_enabler == 0:
print("Please run get_labeled_pandas before then plot_cluster_k")
return
try:
x = self.final['label'][self.final[self.name]==word]
index_x = x.index.values[0]
x = x.values[0]
except IndexError:
print("I'm sorry. {} not in dataframe".format(word))
return
df = self.final[self.final['label'] == x][self.name]
cloud = list(set(df) - set([word]))
indexes = [self.final[self.final[self.name]==w].index.values[0] for w in cloud]
wordcloud = {}
for i in indexes:
wordcloud[" " + self._idx_name[i] + " "] = int((1 - distance_matrix[index_x,i] + 2))
text = [key * val for key, val in wordcloud.items()]
text = " ".join(text).strip()
wordc = WordCloud(background_color= background_color , max_words=len(set(text.split())))
wordc.generate(text)
plt.figure(figsize=(15,5))
plt.imshow(wordc, interpolation='bilinear')
plt.axis("off")
if save == True:
plt.savefig(name+'.jpg')
plt.show()