-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
141 lines (121 loc) · 5.73 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from PIL import Image
import os
import os.path
import random
import math
import torch.utils.data
import torchvision.transforms as transforms
def default_image_loader(path):
return Image.open(path).convert('RGB')
class TripletImageLoader(torch.utils.data.Dataset):
def __init__(self, datapath, size=100000, transform=None,
loader=default_image_loader):
self.base_path = datapath
self.size = size
self.data = {}
self.pairs = []
for index in open(os.path.join(self.base_path, "index.txt")):
print ("reading index: ", index)
index = index.strip()
data = []
for line in open(os.path.join(self.base_path, index, "index.txt")):
data.append({'filename': line.rstrip('\n')})
print ("number of images: ", len(data))
i = 0
for line in open(os.path.join(self.base_path, index, "fGPS.txt")):
gps_info = line.rstrip('\n').split(",")
data[i]['gps'] = [float(gps_info[0]), float(gps_info[1])]
i = i + 1
if (i >= len(data)):
break
print ("number of gps info: ", i)
self.data[index] = data
# if (len(data) < self.size):
# self.size = len(data)
if os.path.exists(os.path.join(self.base_path, "pairs.txt")):
for line in open(os.path.join(self.base_path, "pairs.txt")):
pairs = line.rstrip('\n').split(",")
self.pairs.append(((pairs[0], pairs[1]), (pairs[2], pairs[3])))
else:
self.make_pairs()
pairs_file = open(os.path.join(self.base_path, "pairs.txt"), 'w')
for pair in self.pairs:
pairs_file.write("{},{},{},{}\n".format(pair[0][0], pair[0][1], pair[1][0], pair[1][1]))
pairs_file.close()
if (len(self.pairs) < size):
self.size = len(self.pairs)
self.transform = transform
self.loader = loader
def distance(self, gps1, gps2):
return math.hypot(gps1[0] - gps2[0], gps1[1] - gps2[1])
def find_arbitrary_match(self, anchor_gps, positive_data_index):
shuffled_index = list(range(len(self.data[positive_data_index])))
random.shuffle(shuffled_index)
for i in shuffled_index:
if (self.distance(self.data[positive_data_index][shuffled_index[i]]['gps'], anchor_gps) < 0.00002):
return i
return -1
def make_pairs(self):
import time
for i in list(self.data.keys()):
positive_keys = list(self.data.keys())
positive_keys.remove(i)
t1 = time.time()
for anchor in self.data[i]:
for positive_index in positive_keys:
closest_sample = self.data[positive_index][0]
min_distance = 100.
for sample in self.data[positive_index]:
distance = self.distance(anchor['gps'], sample['gps'])
if (distance < min_distance):
min_distance = distance
closest_sample = sample
if min_distance < 0.0002:
self.pairs.append(((i, anchor['filename']), (positive_index, closest_sample['filename'])))
t2 = time.time()
print (t2-t1)
return self.pairs
def __getitem__(self, index):
((anchor_data_index, anchor_path), (positive_data_index, positive_path)) = self.pairs[index]
negative_data_index = random.choice(list(self.data.keys()))
negative_dict = random.choice(self.data[negative_data_index])
negative_path = negative_dict['filename']
anchor = self.loader(os.path.join(self.base_path, anchor_data_index, anchor_path))
positive = self.loader(os.path.join(self.base_path, positive_data_index, positive_path))
negative = self.loader(os.path.join(self.base_path, negative_data_index, negative_path))
if self.transform is not None:
anchor = self.transform(anchor)
positive = self.transform(positive)
negative = self.transform(negative)
return anchor, positive, negative
def __len__(self):
return self.size
"""
def __getitem__(self, index):
keys = list(self.data.keys())
anchor_data_index = random.choice(keys)
negative_data_index = random.choice(keys)
keys.remove(anchor_data_index)
positive_data_index = random.choice(keys)
anchor_dict = self.data[anchor_data_index][index]
negative_dict = random.choice(self.data[negative_data_index])
positive_dict = None
positive_index = self.find_arbitrary_match(anchor_dict['gps'], positive_data_index)
if (positive_index == -1):
print ("did not find a close image")
positive_data_index = anchor_data_index
if (index+3 < len(self.data[positive_data_index])):
positive_dict = self.data[positive_data_index][index+3]
else:
positive_dict = self.data[positive_data_index][index-3]
else:
positive_dict = self.data[positive_data_index][positive_index]
anchor = self.loader(os.path.join(self.base_path, anchor_data_index, anchor_dict['filename']))
positive = self.loader(os.path.join(self.base_path, positive_data_index, positive_dict['filename']))
negative = self.loader(os.path.join(self.base_path, negative_data_index, negative_dict['filename']))
if self.transform is not None:
anchor = self.transform(anchor)
positive = self.transform(positive)
negative = self.transform(negative)
return anchor, positive, negative
"""