-
Notifications
You must be signed in to change notification settings - Fork 78
/
LFM.py
218 lines (201 loc) · 7.46 KB
/
LFM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@author: fuxuemingzhu
@site: www.fuxuemingzhu.cn
@file: LFM.py
@time: 18-6-19 下午2:38
Description : Latent Factor Model
"""
import collections
import random
from operator import itemgetter
import math
from collections import defaultdict
import utils
from utils import LogTime
class LFM:
"""
Latent Factor Model.
Top-N recommendation.
"""
def __init__(self, K, epochs, alpha, lamb, n_rec_movie=10, save_model=True):
"""
Init LFM with K, T, alpha, lamb
:param K: Latent Factor dimension
:param epochs: epochs to go
:param alpha: study rate
:param lamb: regular params
:param save_model: save model
"""
print("LFM start...\n")
self.K = K
self.epochs = epochs
self.alpha = alpha
self.lamb = lamb
self.n_rec_movie = n_rec_movie
self.save_model = save_model
self.users_set, self.items_set = set(), set()
self.items_list = list()
self.P, self.Q = None, None
self.trainset = None
self.testset = None
self.item_popular, self.items_count = None, None
self.model_name = 'K={}-epochs={}-alpha={}-lamb={}'.format(self.K, self.epochs, self.alpha, self.lamb)
def init_model(self, users_set, items_set, K):
"""
Init model, set P and Q with random numbers.
:param users_set: Users set
:param items_set: Items set
:param K: Latent factor dimension.
:return: None
"""
self.P = dict()
self.Q = dict()
for user in users_set:
self.P[user] = [random.random()/math.sqrt(K) for _ in range(K)]
for item in items_set:
self.Q[item] = [random.random()/math.sqrt(K) for _ in range(K)]
def init_users_items_set(self, trainset):
"""
Get users set and items set.
:param trainset: train dataset
:return: Basic users and items set, etc.
"""
users_set, items_set = set(), set()
items_list = []
item_popular = defaultdict(int)
for user, movies in trainset.items():
for item in movies:
item_popular[item] += 1
users_set.add(user)
items_set.add(item)
items_list.append(item)
items_count = len(items_set)
return users_set, items_set, items_list, item_popular, items_count
def gen_negative_sample(self, items: dict):
"""
Generate negative samples
:param items: Original items, positive sample
:return: Positive and negative samples
"""
samples = dict()
for item, rate in items.items():
samples[item] = 1
for i in range(len(items) * 11):
item = self.items_list[random.randint(0, len(self.items_list) - 1)]
if item in samples:
continue
samples[item] = 0
if len(samples) >= 10 * len(items):
break
# print(samples)
return samples
def predict(self, user, item):
"""
Predict the rate for item given user and P and Q.
:param user: Given a user
:param item: Given a item to predict the rate
:return: The predict rate
"""
rate_e = 0
for k in range(self.K):
Puk = self.P[user][k]
Qki = self.Q[item][k]
rate_e += Puk * Qki
return rate_e
def train(self, trainset):
"""
Train model.
:param trainset: Origin trainset.
:return: None
"""
for epoch in range(self.epochs):
print('epoch:', epoch)
for user in trainset:
samples = self.gen_negative_sample(trainset[user])
for item, rui in samples.items():
eui = rui - self.predict(user, item)
for k in range(self.K):
self.P[user][k] += self.alpha * (eui * self.Q[item][k] - self.lamb * self.P[user][k])
self.Q[item][k] += self.alpha * (eui * self.P[user][k] - self.lamb * self.Q[item][k])
self.alpha *= 0.9
# print(self.P)
# print(self.Q)
def fit(self, trainset):
"""
Fit the trainset by optimize the P and Q.
:param trainset: train dataset
:return: None
"""
self.trainset = trainset
self.users_set, self.items_set, self.items_list, self.item_popular, self.items_count = \
self.init_users_items_set(trainset)
model_manager = utils.ModelManager()
try:
self.P = model_manager.load_model(self.model_name + '-P')
self.Q = model_manager.load_model(self.model_name + '-Q')
print('User origin similarity model has saved before.\nLoad model success...\n')
except OSError:
print('No model saved before.\nTrain a new model...')
self.init_model(self.users_set, self.items_set, self.K)
self.train(self.trainset)
print('Train a new model success.')
if self.save_model:
model_manager.save_model(self.P, self.model_name + '-P')
model_manager.save_model(self.Q, self.model_name + '-Q')
print('The new model has saved success.\n')
return self.P, self.Q
def recommend(self, user):
"""
Recommend N movies for the user.
:param user: The user we recommend movies to.
:return: the N best score movies
"""
rank = collections.defaultdict(float)
interacted_items = self.trainset[user]
for item in self.items_set:
if item in interacted_items.keys():
continue
for k, Qik in enumerate(self.Q[item]):
rank[item] += self.P[user][k] * Qik
return [movie for movie, _ in sorted(rank.items(), key=itemgetter(1), reverse=True)][:self.n_rec_movie]
def test(self, testset):
"""
Test the recommendation system by recommending scores to all users in testset.
:param testset: test dataset
:return: None
"""
self.testset = testset
print('Test recommendation system start...')
# varables for precision and recall
hit = 0
rec_count = 0
test_count = 0
# varables for coverage
all_rec_movies = set()
# varables for popularity
popular_sum = 0
# record the calculate time has spent.
test_time = LogTime(print_step=1000)
for user in self.users_set:
test_movies = self.testset.get(user, {})
rec_movies = self.recommend(user) # type:list
for movie in rec_movies:
if movie in test_movies.keys():
hit += 1
all_rec_movies.add(movie)
popular_sum += math.log(1 + self.item_popular[movie])
# log steps and times.
rec_count += self.n_rec_movie
test_count += len(test_movies)
# print time per 500 times.
test_time.count_time()
precision = hit / (1.0 * rec_count)
recall = hit / (1.0 * test_count)
coverage = len(all_rec_movies) / (1.0 * self.items_count)
popularity = popular_sum / (1.0 * rec_count)
print('Test recommendation system success.')
test_time.finish()
print('precision=%.4f\trecall=%.4f\tcoverage=%.4f\tpopularity=%.4f\n' %
(precision, recall, coverage, popularity))