-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_runscript.py
365 lines (331 loc) · 15.4 KB
/
main_runscript.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import torch
import datetime
import jiant.proj.main.modeling.model_setup as jiant_model_setup
import runner as jiant_runner
#import jiant.proj.main.components.container_setup as container_setup
#import jiant.proj.main.metarunner as jiant_metarunner
import metarunner as jiant_metarunner
#import jiant.proj.main.components.evaluate as jiant_evaluate
import evaluate as jiant_evaluate
import jiant.shared.initialization as initialization
import jiant.shared.distributed as distributed
#import jiant.shared.model_setup as model_setup
import model_setup
import jiant.utils.python.io as py_io
import jiant.utils.zconf as zconf
import zlog # maple
import container_setup # maple
@zconf.run_config
class RunConfiguration(zconf.RunConfig):
# === Required parameters === #
jiant_task_container_config_path = zconf.attr(type=str, required=True)
output_dir = zconf.attr(type=str, required=True)
# === Model parameters === #
hf_pretrained_model_name_or_path = zconf.attr(type=str, required=True)
model_path = zconf.attr(type=str, required=True)
model_config_path = zconf.attr(default=None, type=str)
model_load_mode = zconf.attr(default="from_transformers", type=str)
# === Running Setup === #
do_train = zconf.attr(action="store_true")
do_val = zconf.attr(action="store_true")
do_save = zconf.attr(action="store_true")
do_save_last = zconf.attr(action="store_true")
do_save_best = zconf.attr(action="store_true")
write_val_preds = zconf.attr(action="store_true")
write_test_preds = zconf.attr(action="store_true")
eval_every_steps = zconf.attr(type=int, default=0)
min_train_steps = zconf.attr(type=int, default=0)# maple
save_every_steps = zconf.attr(type=int, default=0)
save_checkpoint_every_steps = zconf.attr(type=int, default=0)
no_improvements_for_n_evals = zconf.attr(type=int, default=0)
keep_checkpoint_when_done = zconf.attr(action="store_true")
force_overwrite = zconf.attr(action="store_true")
seed = zconf.attr(type=int, default=-1)
# === Training Learning Parameters === #
learning_rate = zconf.attr(default=1e-5, type=float)
adam_epsilon = zconf.attr(default=1e-8, type=float)
max_grad_norm = zconf.attr(default=1.0, type=float)
optimizer_type = zconf.attr(default="adam", type=str)
# Specialized config
no_cuda = zconf.attr(action="store_true")
fp16 = zconf.attr(action="store_true")
fp16_opt_level = zconf.attr(default="O1", type=str)
local_rank = zconf.attr(default=-1, type=int)
server_ip = zconf.attr(default="", type=str)
server_port = zconf.attr(default="", type=str)
@zconf.run_config
class ResumeConfiguration(zconf.RunConfig):
checkpoint_path = zconf.attr(type=str)
def setup_runner(
args: RunConfiguration,
jiant_task_container: container_setup.JiantTaskContainer,
quick_init_out,
verbose: bool = True,
) -> jiant_runner.JiantRunner:
"""Setup jiant model, optimizer, and runner, and return runner.
Args:
args (RunConfiguration): configuration carrying command line args specifying run params.
jiant_task_container (container_setup.JiantTaskContainer): task and sampler configs.
quick_init_out (QuickInitContainer): device (GPU/CPU) and logging configuration.
verbose: If True, enables printing configuration info (to standard out).
Returns:
jiant_runner.JiantRunner
"""
# TODO document why the distributed.only_first_process() context manager is being used here.
with distributed.only_first_process(local_rank=args.local_rank):
# load the model
jiant_model = jiant_model_setup.setup_jiant_model(
hf_pretrained_model_name_or_path=args.hf_pretrained_model_name_or_path,
model_config_path=args.model_config_path,
task_dict=jiant_task_container.task_dict,
taskmodels_config=jiant_task_container.taskmodels_config,
)
jiant_model_setup.delegate_load_from_path(
jiant_model=jiant_model, weights_path=args.model_path, load_mode=args.model_load_mode
)
jiant_model.to(quick_init_out.device)
user_mode = {e.split('=')[0] : e.split('=')[1] if len(e.split('=')) > 1 else None for e in (args.user_mode[0].split(',') if type(args.user_mode) is not str else args.user_mode.split(',')) }
if 'sctmask' in user_mode:
import numpy as np
parms = dict(jiant_model.named_parameters())
max_len = max([parms[n].numel() for n in parms])
max_ids = list(range(max_len))
jiant_model.encoder.idx_dict = {}
for name in parms:
if not name.startswith('encoder'):
continue
fpar = parms[name].view(-1)
xname = "sctmask__" + name.replace(".", "__")
idx = torch.tensor(np.random.choice(max_ids[:len(fpar)], size = int(len(fpar) * float(user_mode['sctmask'])), replace = False)).to(fpar.device)
x = fpar[idx].detach()
x.requires_grad = True
jiant_model.encoder.idx_dict[xname] = idx
setattr(jiant_model.encoder, xname, torch.nn.Parameter(x))
x = getattr(jiant_model.encoder, xname)
parms[name].requires_grad = False
parms[name].flatten()[idx] = x
elif 'embtune' in user_mode:
parms = dict(jiant_model.named_parameters())
for p in parms:
if 'embeddings' not in p and 'taskmodels_dict' not in p:
parms[p].requires_grad = False
elif 'prompt' in user_mode:
parms = dict(jiant_model.named_parameters())
for name in parms:
if name.startswith('encoder'):
parms[name].requires_grad = False
jiant_model.encoder.embeddings.prompt_weight = torch.nn.Parameter(jiant_model.encoder.embeddings.word_embeddings.weight.new_zeros([int(user_mode['prompt']), 768]))
torch.nn.init.xavier_uniform_(jiant_model.encoder.embeddings.prompt_weight)
jiant_model.encoder.embeddings.prompt_weight.requires_grad = True
jiant_model.encoder.embeddings.word_embeddings.weight_ori = jiant_model.encoder.embeddings.word_embeddings.weight
jiant_model.encoder.embeddings.word_embeddings.weight = torch.nn.Parameter(torch.cat([jiant_model.encoder.embeddings.word_embeddings.weight_ori, jiant_model.encoder.embeddings.prompt_weight]))
elif 'diffprun' in user_mode:
parms = dict(jiant_model.named_parameters())
jiant_model.ori_pars = {}
for p in parms:
w = torch.zeros_like(parms[p])
wname = "w__" + p.replace(".", "__")
setattr(jiant_model.encoder, wname, torch.nn.Parameter(w))
bername = "ber__" + p.replace(".", "__")
ber = torch.randn_like(parms[p]).sigmoid()
setattr(jiant_model.encoder, bername, torch.nn.Parameter(ber))
jiant_model.ori_pars[p] = parms[p].data
parms[p].requires_grad = False
parms[p].detach_()
elif 'adapter' in user_mode:
jiant_model.encoder.add_adapter("adapter")
jiant_model.encoder.train_adapter("adapter")
jiant_model.encoder.to(jiant_model.encoder.device)
elif 'lora' in user_mode:
import loralib as lora
import math
import torch.nn as nn
r = int(user_mode['lora']) if ('lora' in user_mode) else 16
def set_lora(attn , name):
linear = getattr(attn, name)
q = lora.Linear(linear.in_features, linear.out_features, r).to(linear.weight.device)
q.weight.data[:] = linear.weight.data[:]
q.bias.data[:] = linear.bias.data[:]
nn.init.kaiming_uniform_(q.lora_B, a=math.sqrt(5))
setattr(attn, name, q)
for i in range(len(jiant_model.encoder.encoder.layer)):
set_lora(jiant_model.encoder.encoder.layer[i].attention.self, 'query')
set_lora(jiant_model.encoder.encoder.layer[i].attention.self, 'key')
set_lora(jiant_model.encoder.encoder.layer[i].attention.self, 'value')
set_lora(jiant_model.encoder.encoder.layer[i].attention.output, 'dense')
set_lora(jiant_model.encoder.encoder.layer[i].intermediate, 'dense')
set_lora(jiant_model.encoder.encoder.layer[i].output, 'dense')
lora.mark_only_lora_as_trainable(jiant_model)
optimizer_scheduler = model_setup.create_optimizer(
model=jiant_model,
learning_rate=args.learning_rate,
t_total=jiant_task_container.global_train_config.max_steps,
warmup_steps=jiant_task_container.global_train_config.warmup_steps,
warmup_proportion=None,
optimizer_type=args.optimizer_type,
verbose=verbose,
)
jiant_model, optimizer = model_setup.raw_special_model_setup(
model=jiant_model,
optimizer=optimizer_scheduler.optimizer,
fp16=args.fp16,
fp16_opt_level=args.fp16_opt_level,
n_gpu=quick_init_out.n_gpu,
local_rank=args.local_rank,
)
optimizer_scheduler.optimizer = optimizer
rparams = jiant_runner.RunnerParameters(
local_rank=args.local_rank,
n_gpu=quick_init_out.n_gpu,
fp16=args.fp16,
max_grad_norm=args.max_grad_norm,
)
runner = jiant_runner.JiantRunner(
jiant_task_container=jiant_task_container,
jiant_model=jiant_model,
optimizer_scheduler=optimizer_scheduler,
device=quick_init_out.device,
rparams=rparams,
log_writer=quick_init_out.log_writer,
)
runner.user_mode = user_mode
if 'mixout' in user_mode:
import copy
runner.encoder0 = copy.deepcopy(jiant_model.encoder)
return runner
def run_loop(args: RunConfiguration, checkpoint=None):
is_resumed = checkpoint is not None
quick_init_out = initialization.quick_init(args=args, verbose=True)
# maple
quick_init_out.log_writer = zlog.ZLogger(os.path.join(args.log_dir, datetime.datetime.now().strftime("%Y%m%d%H%m%S")), overwrite=True)
print(quick_init_out.n_gpu)
with quick_init_out.log_writer.log_context():
jiant_task_container = container_setup.create_jiant_task_container_from_json(
jiant_task_container_config_path=args.jiant_task_container_config_path, verbose=True,
)
runner = setup_runner(
args=args,
jiant_task_container=jiant_task_container,
quick_init_out=quick_init_out,
verbose=True,
)
if is_resumed:
runner.load_state(checkpoint["runner_state"])
del checkpoint["runner_state"]
checkpoint_saver = jiant_runner.CheckpointSaver(
metadata={"args": args.to_dict()},
save_path=os.path.join(args.output_dir, "checkpoint.p"),
)
if args.do_train:
metarunner = jiant_metarunner.JiantMetarunner(
runner=runner,
save_every_steps=args.save_every_steps,
eval_every_steps=args.eval_every_steps,
min_train_steps = args.min_train_steps,
save_checkpoint_every_steps=args.save_checkpoint_every_steps,
no_improvements_for_n_evals=args.no_improvements_for_n_evals,
checkpoint_saver=checkpoint_saver,
output_dir=args.output_dir,
verbose=True,
save_best_model=args.do_save or args.do_save_best,
save_last_model=args.do_save or args.do_save_last,
load_best_model=True,
log_writer=quick_init_out.log_writer,
)
if is_resumed:
metarunner.load_state(checkpoint["metarunner_state"])
del checkpoint["metarunner_state"]
metarunner.run_train_loop()
if args.do_val:
val_results_dict = runner.run_val(
task_name_list=runner.jiant_task_container.task_run_config.val_task_list,
return_preds=args.write_val_preds,
)
jiant_evaluate.write_val_results(
val_results_dict=val_results_dict,
metrics_aggregator=runner.jiant_task_container.metrics_aggregator,
output_dir=args.output_dir,
verbose=True,
)
if args.write_val_preds:
jiant_evaluate.write_preds(
eval_results_dict=val_results_dict,
path=os.path.join(args.output_dir, "val_preds.p"),
)
else:
assert not args.write_val_preds
if args.do_test:#maple
test_results_dict = runner.run_val(
task_name_list=runner.jiant_task_container.task_run_config.test_task_list,
return_preds=False,
phase = "test"
)
jiant_evaluate.write_val_results(
val_results_dict=test_results_dict,
metrics_aggregator=runner.jiant_task_container.metrics_aggregator,
output_dir=args.output_dir,
verbose=True,
result_file = "test_metrics.json"
)
train_results_dict = runner.run_val(
task_name_list=runner.jiant_task_container.task_run_config.test_task_list,
return_preds=False,
phase = "train"
)
jiant_evaluate.write_val_results(
val_results_dict=train_results_dict,
metrics_aggregator=runner.jiant_task_container.metrics_aggregator,
output_dir=args.output_dir,
verbose=True,
result_file = "train_metrics.json"
)
if args.write_test_preds:
test_results_dict = runner.run_test(
task_name_list=runner.jiant_task_container.task_run_config.test_task_list,
)
jiant_evaluate.write_preds(
eval_results_dict=test_results_dict,
path=os.path.join(args.output_dir, "test_preds.p"),
)
if (
not args.keep_checkpoint_when_done
and args.save_checkpoint_every_steps
and os.path.exists(os.path.join(args.output_dir, "checkpoint.p"))
):
os.remove(os.path.join(args.output_dir, "checkpoint.p"))
py_io.write_file("DONE", os.path.join(args.output_dir, "done_file"))
def run_resume(args: ResumeConfiguration):
resume(checkpoint_path=args.checkpoint_path)
def resume(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
args = RunConfiguration.from_dict(checkpoint["metadata"]["args"])
run_loop(args=args, checkpoint=checkpoint)
def run_with_continue(cl_args):
run_args = RunConfiguration.default_run_cli(cl_args=cl_args)
if not run_args.force_overwrite and (
os.path.exists(os.path.join(run_args.output_dir, "done_file"))
or os.path.exists(os.path.join(run_args.output_dir, "val_metrics.json"))
):
print("Already Done")
return
elif run_args.save_checkpoint_every_steps and os.path.exists(
os.path.join(run_args.output_dir, "checkpoint.p")
):
print("Resuming")
resume(os.path.join(run_args.output_dir, "checkpoint.p"))
else:
print("Running from start")
run_loop(args=run_args)
def main():
mode, cl_args = zconf.get_mode_and_cl_args()
if mode == "run":
run_loop(RunConfiguration.default_run_cli(cl_args=cl_args))
elif mode == "continue":
run_resume(ResumeConfiguration.default_run_cli(cl_args=cl_args))
elif mode == "run_with_continue":
run_with_continue(cl_args=cl_args)
else:
raise zconf.ModeLookupError(mode)
if __name__ == "__main__":
main()