-
Notifications
You must be signed in to change notification settings - Fork 2
/
meta_classifier.py
354 lines (276 loc) · 13.3 KB
/
meta_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import sys, os, random, time
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import tensorflow as tf
import model, util
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_string("data_train", "data_train.csv", "Path to training data csv")
tf.flags.DEFINE_string("data_test", "data_test.csv", "Path to test data csv")
tf.flags.DEFINE_string("log_dir", "/mnt/raid/dnn_weights/output", "Path to output directory")
tf.flags.DEFINE_string("model_pth", None, "Path to pre-trained model")
tf.flags.DEFINE_integer("batch_size", 64, "Batch size")
tf.flags.DEFINE_float("learning_rate", 1e-3, "Learning rate")
tf.flags.DEFINE_integer("epochs", 50, "Epochs")
tf.flags.DEFINE_bool("shuffle_epochs", True, "Re-shuffle at each epoch")
tf.flags.DEFINE_float("dropout", 0.5, "Drop-out before final output")
tf.flags.DEFINE_bool("batchn", True, "Batch normalization")
tf.flags.DEFINE_integer("decay_frequency", 50, "How many times to decay learning rate during training")
tf.flags.DEFINE_integer("prop", 0, "Property to train for")
tf.flags.DEFINE_integer("dnn_part", 0, "Which part of weight vector: 0 - all, 1 - conv, 2 - fc")
tf.flags.DEFINE_integer("slice_length", 5000, "Slice length (size of weight subset)")
tf.flags.DEFINE_list("K", "20,20", "Range of weight snapshots")
tf.flags.DEFINE_integer("P", 100, "Positions")
tf.flags.DEFINE_bool("training", True, "Training")
tf.flags.DEFINE_bool("valid_pos", False, "Test different slice positions")
tf.flags.DEFINE_bool("valid_avg", False, "Print average accuracy over each weight")
tf.flags.DEFINE_bool("load_uniform", True, "Class balancing")
if not os.path.exists(FLAGS.log_dir):
os.makedirs(FLAGS.log_dir)
print('{:=^80}'.format(' Settings '))
for key, value in tf.app.flags.FLAGS.flag_values_dict().items():
print('%s%s'%('{:<30}'.format('%s:'%key),value))
print('{:=^80}'.format(''))
sz = FLAGS.slice_length
K = list(range(int(FLAGS.K[0]),int(FLAGS.K[1])+1,1))
P = FLAGS.P
nci = 13
print('Test data:')
(testset_x, testset_y, err, N_test, C, meta, properties) = util.import_weights(FLAGS.data_test, FLAGS.prop, K, FLAGS.load_uniform)
if FLAGS.training:
print('Training data:')
(trainset_x, trainset_y, err_train, N, Cp, meta_train, _) = util.import_weights(FLAGS.data_train, FLAGS.prop, K)
assert(C==Cp)
perm = [i for i in range(N)]
random.shuffle(perm)
trainset_x = trainset_x[perm]
trainset_y = trainset_y[perm]
meta_train = meta_train[perm]
err_train = err_train[perm,:]
# Train/valid split
split_pos = int(0.9*N)
trainset_x, validset_x = np.split(trainset_x, [split_pos])
trainset_y, validset_y = np.split(trainset_y, [split_pos])
meta_train, meta_valid = np.split(meta_train, [split_pos])
err_train, err_valid = np.split(err_train, [split_pos])
N = trainset_x.shape[0]
N_valid = validset_x.shape[0]
print("====================================")
print("Train set (%d weight snapshots):"%N)
print(trainset_x.shape)
print("Valid set (%d weight snapshots):"%N_valid)
print(validset_x.shape)
print("====================================\n\n")
perm = [i for i in range(N_test)]
random.shuffle(perm)
testset_x = testset_x[perm]
testset_y = testset_y[perm]
meta = meta[perm]
err = err[perm,:]
print('Batch size = %d, Epochs = %d, Learning rate = %0.6f'%(FLAGS.batch_size,FLAGS.epochs,FLAGS.learning_rate))
if FLAGS.training:
print('Training samples = %d (%d dim), Validation samples = %d, Classes = %d\n'%(N, sz, N_test, C))
sys.stdout.flush()
x = tf.placeholder(tf.float32, [FLAGS.batch_size, sz])
x_in = tf.reshape(x, [FLAGS.batch_size, sz, 1])
# More layers if there are large weight vectors
if sz > 40000:
print("Using 11 convolutional layer model\n")
y, _, keep_prob = model.cnn1D(x_in, C, FLAGS.batchn, True, FLAGS.training)
else:
print("Using 9 convolutional layer model\n")
y, _, keep_prob = model.cnn1D_small(x_in, C, FLAGS.batchn, True, True)
for v in tf.global_variables():
print("Name: ", v.name)
print('Model size = %d weights\n'%model.count_all_vars())
sys.stdout.flush()
class_probabilities = tf.nn.softmax(y)
# Regression
if type(testset_y[0]) == np.float32:
print('Using floating point difference loss\n')
y_ = tf.placeholder(tf.float32, [None])
loss_func = tf.reduce_mean(tf.abs(y-y_))
accuracy = loss_func
_, batchvar = tf.nn.moments(tf.abs(y-y_), 0)
# CLassification
else:
print('Using cross entropy loss\n')
y_ = tf.placeholder(tf.int64, [None])
loss_func = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=y))
correct_prediction = tf.equal(tf.argmax(y, 1), y_)
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
_, batchvar = tf.nn.moments(correct_prediction, 0)
if FLAGS.training:
extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(extra_update_ops):
global_step = tf.Variable(0, trainable=False)
learning_rate_decay = tf.train.exponential_decay(FLAGS.learning_rate, global_step, int(FLAGS.epochs*N/(FLAGS.batch_size*FLAGS.decay_frequency)), 0.95, staircase=True)
train_step = tf.train.AdamOptimizer(learning_rate_decay).minimize(loss_func)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=100)
with tf.Session() as sess:
if FLAGS.model_pth == None:
sess.run(tf.global_variables_initializer())
elif not FLAGS.valid_pos:
print('Loading model from "%s": '%FLAGS.model_pth)
saver.restore(sess, FLAGS.model_pth)
sys.stdout.flush()
if FLAGS.training:
start_time = time.time()
A = np.zeros([3000,4])
train_accuracy, b, shf, p, a = 0.0, 0, 0, 0, 0
for i in range(int(FLAGS.epochs*N/FLAGS.batch_size) + 1):
shf += 1
# Shuffle data
if FLAGS.shuffle_epochs and shf*FLAGS.batch_size > N:
shf = 0
perm = [i for i in range(N)]
random.shuffle(perm)
trainset_x = trainset_x[perm]
trainset_y = trainset_y[perm]
meta_train = meta_train[perm]
bb = i*FLAGS.batch_size
ii = np.mod(np.arange(bb, bb+FLAGS.batch_size), N)
x_batch = np.empty([FLAGS.batch_size, sz], dtype='float32')
y_batch = trainset_y[ii]
for k in range(FLAGS.batch_size):
if FLAGS.dnn_part == 0:
xs = random.randint(0, len(trainset_x[ii[k]])-sz)
elif FLAGS.dnn_part == 1:
xs = random.randint(0, np.maximum(0, meta_train[ii[k],nci]-sz))
elif FLAGS.dnn_part == 2:
xs = random.randint(meta_train[ii[k],nci], len(trainset_x[ii[k]])-sz)
x_batch[k,:] = trainset_x[ii[k]][xs:xs+sz]
b += 1
train_accuracy += accuracy.eval(feed_dict={x: x_batch, y_: y_batch, keep_prob: 1.0})
if i % int(FLAGS.epochs*N/(FLAGS.batch_size*50)) == 0:
valid_accuracy, cv = 0.0, 0
for j in range(int(N_valid/FLAGS.batch_size)):
cv+=1
bb = j*FLAGS.batch_size
ii = np.mod(np.arange(bb, bb+FLAGS.batch_size), N_valid)
x_valid = np.empty([FLAGS.batch_size, sz], dtype='float32')
y_valid = validset_y[ii]
for k in range(FLAGS.batch_size):
if FLAGS.dnn_part == 0:
xs = random.randint(0, len(validset_x[ii[k]])-sz)
elif FLAGS.dnn_part == 1:
xs = random.randint(0, np.maximum(0, meta_valid[ii[k],nci]-sz))
elif FLAGS.dnn_part == 2:
xs = random.randint(meta_valid[ii[k],nci], len(validset_x[ii[k]])-sz)
x_valid[k,:] = validset_x[ii[k]][xs:xs+sz]
valid_accuracy += accuracy.eval(feed_dict={x: x_valid, y_: y_valid, keep_prob: 1.0})
test_accuracy, ct = 0.0, 0
for j in range(int(N_test/FLAGS.batch_size)):
ct+=1
bb = j*FLAGS.batch_size
ii = np.mod(np.arange(bb, bb+FLAGS.batch_size), N_test)
x_test = np.empty([FLAGS.batch_size, sz], dtype='float32')
y_test = testset_y[ii]
for k in range(FLAGS.batch_size):
if FLAGS.dnn_part == 0:
xs = random.randint(0, len(testset_x[ii[k]])-sz)
elif FLAGS.dnn_part == 1:
xs = random.randint(0, np.maximum(0, meta[ii[k],nci]-sz))
elif FLAGS.dnn_part == 2:
xs = random.randint(meta[ii[k],nci], len(testset_x[ii[k]])-sz)
x_test[k,:] = testset_x[ii[k]][xs:xs+sz]
test_accuracy += accuracy.eval(feed_dict={x: x_test, y_: y_test, keep_prob: 1.0})
print('step %05d (epoch %0.4f of %d), train accuracy = %0.6f, valid accuracy = %0.6f, test accuracy = %0.6f' % (i, i*FLAGS.batch_size/N, FLAGS.epochs, train_accuracy/b, valid_accuracy/cv, test_accuracy/ct))
sys.stdout.flush()
A[a,0] = i
A[a,1] = 100.0*(train_accuracy/b)
A[a,2] = 100.0*(valid_accuracy/cv)
A[a,3] = 100.0*(test_accuracy/ct)
a += 1
b = 0
train_accuracy = 0.0
p += 1
save_path = saver.save(sess, '%s/model.ckpt'%FLAGS.log_dir, global_step=p)
train_step.run(feed_dict={x: x_batch, y_: y_batch, keep_prob: FLAGS.dropout})
duration = time.time() - start_time
print('Finished! Total time = %f min'%(duration/60.0))
sys.stdout.flush()
A = A[:a,:]
fig = plt.figure(figsize=(10, 6))
plt.plot(A[:,0], A[:,1], 'r--', A[:,0], A[:,2], 'r-', A[:,0], A[:,3], 'g-')
plt.grid(True)
plt.xlabel('Step')
plt.ylabel('Error')
plt.legend(['Training accuracy', 'Validation accuracy', 'Test accuracy'])
plt.savefig('%s/accuracy.pdf'%FLAGS.log_dir, dpi=100)
plt.close(fig)
A.tofile('%s/accuracy.bin'%FLAGS.log_dir)
else:
if FLAGS.valid_avg:
print("Running per-weight average evaluation...\n")
for k in range(len(K)):
print("\n\nStep %02d:\n"%K[k])
fid_acc = open('valid_avg_%02d_%06d_%02d_%02d.txt'%(FLAGS.prop, sz, K[k], FLAGS.dnn_part), 'w')
for i in range(N_test):
x_valid = np.empty([FLAGS.batch_size, sz])
y_valid = np.ones(FLAGS.batch_size)*testset_y[i]
samp = (np.round(np.linspace(0, len(testset_x[i])-sz, FLAGS.batch_size))).astype('int64')
if FLAGS.dnn_part == 1:
samp = (np.round(np.linspace(0, np.maximum(0, meta[i,nci]-sz), FLAGS.batch_size))).astype('int64')
elif FLAGS.dnn_part == 2:
samp = (np.round(np.linspace(meta[i,nci], len(testset_x[i])-sz, FLAGS.batch_size))).astype('int64')
for j in range(FLAGS.batch_size):
x_valid[j] = testset_x[i][samp[j]:samp[j]+sz]
valid_accuracy = accuracy.eval(feed_dict={x: x_valid, y_: y_valid, keep_prob: 1.0})
fid_acc.write('%s %08f %08f %d %08f '%(meta[i,0], err[i,0], err[i,1], FLAGS.prop, valid_accuracy))
fid_acc.write('%08f %d %d %d %d %d %d %d %d %d %d\n'%(meta[i,1],meta[i,2],meta[i,3],meta[i,4],meta[i,5],meta[i,6],meta[i,7],meta[i,8],meta[i,9],meta[i,10],meta[i,11]))
print('sample %03d of %d: accuracy = %f -- %f, %03d, %d, %d, %d, %s'%(i,N_test,valid_accuracy, meta[i,1],meta[i,2],meta[i,3],meta[i,4],meta[i,5],meta[i,0]))
sys.stdout.flush()
fid_acc.close()
elif FLAGS.valid_pos:
print("Running positional evaluation...\n")
M = range(50,51)
N_ = int(N_test/FLAGS.batch_size)*FLAGS.batch_size
G = np.zeros((N_,len(M),P,C), dtype='float32')
for m in range(len(M)):
model_pth = '%s/model.ckpt-%d'%(FLAGS.model_pth,M[m])
print('Loading model from "%s": '%model_pth)
saver.restore(sess, model_pth)
sys.stdout.flush()
for p in range(P):
valid_accuracy, c = 0.0, 0
for j in range(int(N_/FLAGS.batch_size)):
c+=1
bb = j*FLAGS.batch_size
ii = np.mod(np.arange(bb, bb+FLAGS.batch_size), N_)
x_valid = np.empty([FLAGS.batch_size, sz], dtype='float32')
y_valid = testset_y[ii]
for k in range(FLAGS.batch_size):
samp = (np.round(np.linspace(0, len(testset_x[ii[k]])-sz, P))).astype('int64')
if FLAGS.dnn_part == 1:
samp = (np.round(np.linspace(0, np.maximum(0, meta[ii[k],nci]-sz), P))).astype('int64')
elif FLAGS.dnn_part == 2:
samp = (np.round(np.linspace(meta[ii[k],nci], len(testset_x[ii[k]])-sz, P))).astype('int64')
xs = samp[p]
x_valid[k,:] = testset_x[ii[k]][xs:xs+sz]
cb = class_probabilities.eval(feed_dict={x: x_valid, keep_prob: 1.0})
G[ii,m,p,:] = cb
print('model %d, position %04d of %04d' % (M[m], p+1, P))
sys.stdout.flush()
G.tofile('%s/step_%02d.bin'%(FLAGS.log_dir, K[0]))
else:
test_accuracy, ct = 0.0, 0
for j in range(int(N_test/FLAGS.batch_size)):
ct+=1
bb = j*FLAGS.batch_size
ii = np.mod(np.arange(bb, bb+FLAGS.batch_size), N_test)
x_test = np.empty([FLAGS.batch_size, sz], dtype='float32')
y_test = testset_y[ii]
for k in range(FLAGS.batch_size):
if FLAGS.dnn_part == 0:
xs = random.randint(0, len(testset_x[ii[k]])-sz)
elif FLAGS.dnn_part == 1:
xs = random.randint(0, np.maximum(0, meta[ii[k],nci]-sz))
elif FLAGS.dnn_part == 2:
xs = random.randint(meta[ii[k],nci], len(testset_x[ii[k]])-sz)
x_test[k,:] = testset_x[ii[k]][xs:xs+sz]
test_accuracy += accuracy.eval(feed_dict={x: x_test, y_: y_test, keep_prob: 1.0})
print('done (%d batches, %d samples), test accuracy = %0.6f' % (ct,ct*FLAGS.batch_size,test_accuracy/ct))
sys.stdout.flush()