diff --git a/tests/test_kalmanFilter.py b/tests/test_kalmanFilter.py index 7c2f2e2..4a13bae 100644 --- a/tests/test_kalmanFilter.py +++ b/tests/test_kalmanFilter.py @@ -7,35 +7,34 @@ class TestKalmanFilter(unittest.TestCase): def test_KalmanFilter(self): - print('Run KF class test.') # initialization of state matrices A = np.eye(2) X = np.array([[0.1], [0.1]]) - B = np.ones((X.shape[0], 1)) - U = 0.5 + B = np.ones((2, 1)) # 2 rows (same as X), 1 column + U = np.array([[0.5]]) # single control input as a column vector # process noise covariance matrix and initial state covariance - Q = np.eye(X.shape[0]) + Q = np.eye(2) P = np.diag((0.01, 0.01)) # measurement matrices (state X plus a random gaussian noise) - Y = np.array([X[0, 0] + 0.001, X[1, 0] + 0.001]) - Y = Y.reshape(-1, 1) + Y = np.array([[X[0, 0] + 0.001], [X[1, 0] + 0.001]]) # 2x1 matrix C = np.eye(2) # measurement noise covariance - R = np.eye(Y.shape[0]) - - var = {} - var.update({'X': X}) - var.update({'A': A}) - var.update({'B': B}) - var.update({'U': U}) - var.update({'Q': Q}) - var.update({'C': C}) - var.update({'R': R}) + R = np.eye(2) + + var = { + 'X': X, + 'A': A, + 'B': B, + 'U': U, + 'Q': Q, + 'C': C, + 'R': R + } kf = KalmanFilter() kf.setup(var) @@ -43,11 +42,12 @@ def test_KalmanFilter(self): x_est, y_predict = kf.update(Y) # verify if the object of the class is correct - self.assertEqual(x_est[0], 0.3505) - self.assertEqual(x_est[1], 0.3505) - self.assertEqual(y_predict[0], 0.07026195923972386) + np.testing.assert_almost_equal(x_est[0], 0.1014, decimal=4) + np.testing.assert_almost_equal(x_est[1], 0.1014, decimal=4) + np.testing.assert_almost_equal(y_predict[0], 0.0001588, decimal=7) if __name__ == '__main__': suite = unittest.TestSuite() suite.addTest(TestKalmanFilter('test_KalmanFilter')) + unittest.TextTestRunner().run(suite)