Skip to content

Latest commit

 

History

History
80 lines (68 loc) · 3.6 KB

README.md

File metadata and controls

80 lines (68 loc) · 3.6 KB

coagmetr

Lifecycle: experimental Travis build status Codecov test coverage

coagmetr facilitates data fetching from Colorado Climate Center Web Services.

Currently, only CoAgMet daily, hourly, and five minute data is supported (including daily and hourly soil moisture).

Installation

# install.packages("devtools")
devtools::install_github("gacolitti/coagmetr")

Examples

Station meta data:

library(coagmet)
get_coagmet_data("meta")
#> # A tibble: 115 x 8
#>    station_id station_name station_location latitude longitude elevation_ft
#>    <chr>      <chr>        <chr>               <dbl>     <dbl>        <dbl>
#>  1 akr02      Akron        USDA-ARS-GPRC        40.2     -103.         4537
#>  2 alt01      Ault         1 mi SE Ault         40.6     -105.         4910
#>  3 avn01      Avondale     1 mi SE Avondale     38.2     -104.         4630
#>  4 bla01      Blanca       8 mi SW Blanca       37.4     -106.         7755
#>  5 bnv01      Buena Vista  CDW Area SW of ~     38.8     -106.         7900
#>  6 brg01      Briggsdale   3 mi S Briggsda~     40.6     -104.         4858
#>  7 brk01      Bedrock      1 mile NE of Be~     38.3     -109.         4973
#>  8 brl01      Burlington ~ 18 mi NNE Burli~     39.5     -102.         3900
#>  9 brl02      Burlington ~ 6 mi SE Burling~     39.3     -102.         4170
#> 10 brl03      Burlington 3 4 mi NE of Burl~     39.3     -102.         4068
#> # ... with 105 more rows, and 2 more variables: data_logger_format <chr>,
#> #   active <chr>

Hourly data for all stations from January 1st, 2020 to current:

get_coagmet_data("hourly", start_date = "2020-01-01")
#> Warning: 76424 parsing failures.
#>  row  col           expected actual         file
#> 1237 st15 1/0/T/F/TRUE/FALSE -0.107 literal data
#> 1238 st15 1/0/T/F/TRUE/FALSE -0.204 literal data
#> 1239 st15 1/0/T/F/TRUE/FALSE -0.349 literal data
#> 1240 st15 1/0/T/F/TRUE/FALSE -0.538 literal data
#> 1241 st15 1/0/T/F/TRUE/FALSE -0.755 literal data
#> .... .... .................. ...... ............
#> See problems(...) for more details.
#> # A tibble: 84,553 x 17
#>    station_id datetime            tmean    rh    vp    sr    ws wind_vec
#>    <chr>      <dttm>              <dbl> <dbl> <dbl> <dbl> <dbl>    <dbl>
#>  1 akr02      2020-01-01 00:00:00 -7.50 0.769 0.268 0.006  2.36     248.
#>  2 akr02      2020-01-01 01:00:00 -6.7  0.749 0.277 0.006  2.95     256.
#>  3 akr02      2020-01-01 02:00:00 -5.16 0.691 0.288 0.005  3.64     264.
#>  4 akr02      2020-01-01 03:00:00 -6.17 0.715 0.275 0.005  3.28     257.
#>  5 akr02      2020-01-01 04:00:00 -6.03 0.684 0.266 0.006  3.16     255.
#>  6 akr02      2020-01-01 05:00:00 -4.01 0.594 0.27  0.007  3.60     258.
#>  7 akr02      2020-01-01 06:00:00 -3.03 0.56  0.274 0.006  4.52     265.
#>  8 akr02      2020-01-01 07:00:00 -3.74 0.625 0.290 0.012  2.58     244.
#>  9 akr02      2020-01-01 08:00:00 -1.30 0.593 0.329 2.31   4.56     271.
#> 10 akr02      2020-01-01 09:00:00  1.08 0.558 0.369 7.55   3.80     254.
#> # ... with 84,543 more rows, and 9 more variables: wind_std <dbl>,
#> #   pp <dbl>, st5 <dbl>, st15 <lgl>, gust <dbl>, gusttm <time>,
#> #   gustdir <dbl>, etr <dbl>, eto <dbl>