-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathclassify_real_time.py
237 lines (194 loc) · 7.46 KB
/
classify_real_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import os.path
import re
import sys
import tarfile
import cv2
from time import sleep
import numpy as np
from six.moves import urllib
import tensorflow as tf
import time
from gtts import gTTS
import pygame
import os
from threading import Thread
import cv2
model_dir = '/tmp/imagenet'
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# Threaded class for performance improvement
class VideoStream:
def __init__(self, src=0):
self.stream = cv2.VideoCapture(src)
(self.grabbed, self.frame) = self.stream.read()
self.stopped = False
def start(self):
Thread(target=self.update, args=()).start()
return self
def update(self):
while True:
if self.stopped:
return
(self.grabbed, self.frame) = self.stream.read()
def read(self):
# Return the latest frame
return self.frame
def stop(self):
self.stopped = True
class NodeLookup(object):
def __init__(self,
label_lookup_path=None,
uid_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
if not uid_lookup_path:
uid_lookup_path = os.path.join(
model_dir, 'imagenet_synset_to_human_label_map.txt')
self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
def load(self, label_lookup_path, uid_lookup_path):
if not tf.gfile.Exists(uid_lookup_path):
tf.logging.fatal('File does not exist %s', uid_lookup_path)
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path)
# Loads mapping from string UID to human-readable string
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
p = re.compile(r'[n\d]*[ \S,]*')
for line in proto_as_ascii_lines:
parsed_items = p.findall(line)
uid = parsed_items[0]
human_string = parsed_items[2]
uid_to_human[uid] = human_string
# Loads mapping from string UID to integer node ID.
node_id_to_uid = {}
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
for line in proto_as_ascii:
if line.startswith(' target_class:'):
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
target_class_string = line.split(': ')[1]
node_id_to_uid[target_class] = target_class_string[1:-2]
# Loads the final mapping of integer node ID to human-readable string
node_id_to_name = {}
for key, val in node_id_to_uid.items():
if val not in uid_to_human:
tf.logging.fatal('Failed to locate: %s', val)
name = uid_to_human[val]
node_id_to_name[key] = name
return node_id_to_name
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]
def create_graph():
# Creates graph from saved graph_def.pb.
with tf.gfile.FastGFile(os.path.join(
model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
def maybe_download_and_extract():
# Download and extract model tar file
dest_directory = model_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write(
'\r>> Downloading %s %.1f%%' %
(filename,
float(
count *
block_size) /
float(total_size) *
100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
# Download and create graph
maybe_download_and_extract()
create_graph()
# Variables declarations
frame_count = 0
score = 0
start = time.time()
pygame.mixer.init()
pred = 0
last = 0
human_string = None
# Init video stream
vs = VideoStream(src=0).start()
# Start tensroflow session
with tf.Session() as sess:
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
while True:
frame = vs.read()
frame_count += 1
# Only run every 5 frames
if frame_count % 5 == 0:
# Save the image as the fist layer of inception is a DecodeJpeg
cv2.imwrite("current_frame.jpg", frame)
image_data = tf.gfile.FastGFile("./current_frame.jpg", 'rb').read()
predictions = sess.run(
softmax_tensor, {
'DecodeJpeg/contents:0': image_data})
predictions = np.squeeze(predictions)
node_lookup = NodeLookup()
# change n_pred for more predictions
n_pred = 1
top_k = predictions.argsort()[-n_pred:][::-1]
for node_id in top_k:
human_string_n = node_lookup.id_to_string(node_id)
score = predictions[node_id]
if score > .5:
# Some manual corrections
# Kind of cheating
if human_string_n == "stethoscope":
human_string_n = "Headphones"
if human_string_n == "spatula":
human_string_n = "fork"
if human_string_n == "iPod":
human_string_n = "iPhone"
human_string = human_string_n
lst = human_string.split()
human_string = " ".join(lst[0:2])
human_string_filename = str(lst[0])
current = time.time()
fps = frame_count / (current - start)
# Speech module
if last > 40 and pygame.mixer.music.get_busy(
) == False and human_string == human_string_n:
pred += 1
name = human_string_filename + ".mp3"
# Only get from google if we dont have it
if not os.path.isfile(name):
tts = gTTS(text="I see a " + human_string, lang='en')
tts.save(name)
last = 0
pygame.mixer.music.load(name)
pygame.mixer.music.play()
# Show info during some time
if last < 40 and frame_count > 10:
cv2.putText(frame, human_string, (20, 400),
cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255))
cv2.putText(frame, str(np.round(score, 2)) + "%",
(20, 440), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255))
if frame_count > 20:
cv2.putText(frame, "fps: " + str(np.round(fps, 2)),
(460, 460), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255))
cv2.imshow("Frame", frame)
last += 1
# if the 'q' key is pressed, stop the loop
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# cleanup everything
vs.stop()
cv2.destroyAllWindows()
sess.close()
print("Done")