-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclassifier_ann.cpp
129 lines (123 loc) · 4.6 KB
/
classifier_ann.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include "classifier_ann.h"
ClassifierANN::ClassifierANN()
{
par_NumOfClasses = -1;
par_TypeMethod = ann_method_idx[0];
par_TypeFx = ann_fx_idx[0];
par_Param1 = 0.1;
par_Param2 = 0.1;
//
par_NumNeurons_Layer1 = 8;
par_NumNeurons_Layer2 = -1;
par_NumNeurons_Layer3 = -1;
//
par_TermCrit_Type = rf_termcrit_idx[0];
par_TermCrit_MaxNumIterations = 100;
par_TermCrit_Accuracy = 0.01f;
}
void ClassifierANN::trainData(const std::vector<cv::Point> &data, const std::vector<int> &labels)
{
// cls.clear();
//
if(par_NumOfClasses<0) {
std::cerr << "Bad initialization of #classes" << std::endl;
return;
}
loadData(data, labels);
cv::Mat outClasses = cv::Mat::zeros(data.size(), par_NumOfClasses, CV_32FC1);
for(int ss=0; ss<outClasses.rows; ss++) {
int lidx = labels.at(ss);
for(int ii=0; ii<outClasses.cols; ii++) {
if(ii==lidx) {
outClasses.at<float>(ss,ii) = 1.f;
} else {
outClasses.at<float>(ss,ii) = 0.f;
}
}
}
//
if(par_NumNeurons_Layer3>0) {
layerSizes = cv::Mat(1,5, CV_32SC1);
layerSizes.at<int>(0) = 2;
layerSizes.at<int>(1) = par_NumNeurons_Layer1;
layerSizes.at<int>(2) = par_NumNeurons_Layer2;
layerSizes.at<int>(3) = par_NumNeurons_Layer3;
layerSizes.at<int>(4) = par_NumOfClasses;
} else {
if(par_NumNeurons_Layer2>0) {
layerSizes = cv::Mat(1,4, CV_32SC1);
layerSizes.at<int>(0) = 2;
layerSizes.at<int>(1) = par_NumNeurons_Layer1;
layerSizes.at<int>(2) = par_NumNeurons_Layer2;
layerSizes.at<int>(3) = par_NumOfClasses;
} else {
layerSizes = cv::Mat(1,3, CV_32SC1);
layerSizes.at<int>(0) = 2;
layerSizes.at<int>(1) = par_NumNeurons_Layer1;
layerSizes.at<int>(2) = par_NumOfClasses;
}
}
weights = cv::Mat( 1, data.size(), CV_32FC1, cv::Scalar::all(1) );
// std::cout << "pData :" << pData << std::endl;
// std::cout << "lData :" << lData << std::endl;
// std::cout << "outClasses :" << outClasses << std::endl;
// std::cout << "layers :" << layerSizes << std::endl;
// std::cout << "weights :" << weights << std::endl;
cv::ANN_MLP_TrainParams params = cv::ANN_MLP_TrainParams(
cv::TermCriteria(par_TermCrit_Type, par_TermCrit_MaxNumIterations, par_TermCrit_Accuracy),
par_TypeMethod,
par_Param1,
par_Param2);
cls.create(layerSizes, par_TypeFx, par_Param1, par_Param2);
cls.train(pData, outClasses, weights, cv::Mat(), params);
// cls.create(layerSizes, cv::NeuralNet_MLP::SIGMOID_SYM, 1, 1);
// cls.train(pData,outClasses, weights);
isTrainedFlag = true;
}
int ClassifierANN::classify(int x, int y)
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
cv::Mat out = cv::Mat::zeros(1, par_NumOfClasses, CV_32FC1);
cls.predict(testSample, out);
// std::cout << out << std::endl;
cv::Point pMax;
cv::minMaxLoc(out, 0, 0, 0, &pMax);
int ret = pMax.x;
if((ret<0)||(ret>=par_NumOfClasses)) {
ret=0;
}
return ret;
}
QString ClassifierANN::toQString() const
{
return QString("ANN{method=%1, Fx=%2, param1=%3, param2=%4, #neurons={%5,%6,%7}, TermCrit(type=%8, #iter=%9, accuracy=%10)}")
.arg(par_TypeMethod)
.arg(par_TypeFx)
.arg(par_Param1)
.arg(par_Param2)
.arg(par_NumNeurons_Layer1).arg(par_NumNeurons_Layer2).arg(par_NumNeurons_Layer3)
.arg(par_TermCrit_Type)
.arg(par_TermCrit_MaxNumIterations)
.arg(par_TermCrit_Accuracy);
}
void ClassifierANN::setParameters(
int numOfClasses,
int typeMethod, int typeFx, double param1, double param2,
int numNeurons_Layer1, int numNeurons_Layer2, int numNeurons_Layer3,
int termCrit_Type, int termCrit_MaxNumIterations, float termCrit_Accuracy)
{
par_NumOfClasses = numOfClasses;
par_TypeMethod = typeMethod;
par_TypeFx = typeFx;
par_Param1 = param1;
par_Param2 = param2;
//
par_NumNeurons_Layer1 = numNeurons_Layer1;
par_NumNeurons_Layer2 = numNeurons_Layer2;
par_NumNeurons_Layer3 = numNeurons_Layer3;
//
par_TermCrit_Type = termCrit_Type;
par_TermCrit_MaxNumIterations = termCrit_MaxNumIterations;
par_TermCrit_Accuracy = termCrit_Accuracy;
}