forked from meta-llama/llama
-
Notifications
You must be signed in to change notification settings - Fork 31
/
server.py
76 lines (61 loc) · 2.34 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from fastapi import FastAPI, Request, HTTPException, Depends
from pydantic import BaseModel
from typing import List, Union
from inference import LLaMAInference
def create_app(args):
app = FastAPI()
llama = LLaMAInference(
args.llama_path,
args.model,
max_batch_size=args.max_batch_size,
max_seq_len=args.max_seq_len
)
class GenerateRequest(BaseModel):
prompt: Union[List[str], str]
temperature: float = 0.8
top_p: float = 0.95
stop_ids: List[int] = None
stop_words: List[str] = None
max_length: int = 512
repetition_penalty: float = 1.0
def verify_token(req: Request):
if args.token == "":
return True
token = req.headers["Authorization"]
if token != args.token:
raise HTTPException(
status_code=401,
detail="Unauthorized"
)
return True
@app.get("/generate")
def generate(gen_args: GenerateRequest, authorized: bool = Depends(verify_token)):
if isinstance(gen_args.prompt, str):
gen_args.prompt = [gen_args.prompt]
if len(gen_args.prompt) > args.max_batch_size:
return {"error": "Batch size too small"}
generated, stats = llama.generate(
gen_args.prompt,
max_length=gen_args.max_length,
temperature=gen_args.temperature,
top_p=gen_args.top_p,
repetition_penalty=gen_args.repetition_penalty,
stop_ids=gen_args.stop_ids,
stop_words=gen_args.stop_words
)
return {"generated": generated, "stats": stats}
return app
if __name__ == "__main__":
import uvicorn
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=3000)
parser.add_argument("--llama-path", type=str, required=True)
parser.add_argument("--model", type=str, required=True, choices=["7B", "13B", "30B", "65B"])
parser.add_argument("--max-batch-size", type=int, default=1)
parser.add_argument("--max-seq-len", type=int, default=2048)
parser.add_argument("--token", type=str, default="")
args = parser.parse_args()
app = create_app(args)
uvicorn.run(app, host="0.0.0.0", port=args.port)