Skip to content

Latest commit

 

History

History
 
 

detection

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Transfer Learning: Object Detection

Running

  1. Install Detectron2.

  2. Convert pre-trained models to Detectron2 models:

python convert_pretrained.py model.pth det_model.pkl
  1. Set up data folders following Detectron2's datasets instruction.

  2. Go to Detectron2's folder, and run:

python tools/train_net.py \
  --num-gpus 8 \
  --config-file /path/to/config/config.yaml \
  MODEL.WEIGHTS /path/to/model/det_model.pkl

where config.yaml is the config file listed under the configs folder.

Results

(1) Results with ResNet-50 (200 epochs pre-training)

Mask-RCNN, FPN:

Pretrain Arch Detector lr
sched
box
AP
mask
AP
download
No (rand init.) R-50 Mask-RCNN, FPN 1x 32.8 29.9 config  |  model  |  log
Supervised R-50 Mask-RCNN, FPN 1x 39.7 35.9 config  |  model  |  log
InstDis R-50 Mask-RCNN, FPN 1x 38.8 35.2 config  |  model  |  log
PIRL R-50 Mask-RCNN, FPN 1x 38.6 35.1 config  |  model  |  log
MoCo v1 R-50 Mask-RCNN, FPN 1x 39.4 35.6 config  |  model  |  log
InfoMin Aug. R-50 Mask-RCNN, FPN 1x 40.6 36.7 config  |  model  |  log
No (rand init.) R-50 Mask-RCNN, FPN 2x 38.4 34.7 config  |  model  |  log
Supervised R-50 Mask-RCNN, FPN 2x 41.6 37.6 config  |  model  |  log
InstDis R-50 Mask-RCNN, FPN 2x 41.3 37.3 config  |  model  |  log
PIRL R-50 Mask-RCNN, FPN 2x 41.2 37.4 config  |  model  |  log
MoCo v1 R-50 Mask-RCNN, FPN 2x 41.7 37.5 config  |  model  |  log
MoCo v2 R-50 Mask-RCNN, FPN 2x 41.7 37.6 config  |  model  |  log
InfoMin Aug. R-50 Mask-RCNN, FPN 2x 42.5 38.4 config  |  model  |  log
No (rand init.) R-50 Mask-RCNN, FPN 6x 42.7 38.6 config  |  model  |  log
Supervised R-50 Mask-RCNN, FPN 6x 42.6 38.5 config  |  model  |  log
InfoMin Aug. R-50 Mask-RCNN, FPN 6x 43.6 39.2 config  |  model  |  log

Mask-RCNN, C4:

Pretrain Arch Detector lr
sched
box
AP
mask
AP
download
Supervised R-50 Mask-RCNN, C4 1x 38.2 33.3 config
MoCo R-50 Mask-RCNN, C4 1x 38.5 33.6 config
InfoMin Aug. R-50 Mask-RCNN, C4 1x 39.0 34.1 config
Supervised R-50 Mask-RCNN, C4 2x 40.0 34.7 config
MoCo R-50 Mask-RCNN, C4 2x 40.7 35.6 config
InfoMin Aug. R-50 Mask-RCNN, C4 2x 41.3 36.0 config

(2) Results with other architecture

See paper.

TODO: add logs and pre-trained detector models