-
Install Detectron2.
-
Convert pre-trained models to Detectron2 models:
python convert_pretrained.py model.pth det_model.pkl
-
Set up data folders following Detectron2's datasets instruction.
-
Go to Detectron2's folder, and run:
python tools/train_net.py \
--num-gpus 8 \
--config-file /path/to/config/config.yaml \
MODEL.WEIGHTS /path/to/model/det_model.pkl
where config.yaml
is the config file listed under the configs folder.
(1) Results with ResNet-50 (200 epochs pre-training)
Mask-RCNN, FPN:
Pretrain | Arch | Detector | lr sched |
box AP |
mask AP |
download |
---|---|---|---|---|---|---|
No (rand init.) | R-50 | Mask-RCNN, FPN | 1x | 32.8 | 29.9 | config | model | log |
Supervised | R-50 | Mask-RCNN, FPN | 1x | 39.7 | 35.9 | config | model | log |
InstDis | R-50 | Mask-RCNN, FPN | 1x | 38.8 | 35.2 | config | model | log |
PIRL | R-50 | Mask-RCNN, FPN | 1x | 38.6 | 35.1 | config | model | log |
MoCo v1 | R-50 | Mask-RCNN, FPN | 1x | 39.4 | 35.6 | config | model | log |
InfoMin Aug. | R-50 | Mask-RCNN, FPN | 1x | 40.6 | 36.7 | config | model | log |
No (rand init.) | R-50 | Mask-RCNN, FPN | 2x | 38.4 | 34.7 | config | model | log |
Supervised | R-50 | Mask-RCNN, FPN | 2x | 41.6 | 37.6 | config | model | log |
InstDis | R-50 | Mask-RCNN, FPN | 2x | 41.3 | 37.3 | config | model | log |
PIRL | R-50 | Mask-RCNN, FPN | 2x | 41.2 | 37.4 | config | model | log |
MoCo v1 | R-50 | Mask-RCNN, FPN | 2x | 41.7 | 37.5 | config | model | log |
MoCo v2 | R-50 | Mask-RCNN, FPN | 2x | 41.7 | 37.6 | config | model | log |
InfoMin Aug. | R-50 | Mask-RCNN, FPN | 2x | 42.5 | 38.4 | config | model | log |
No (rand init.) | R-50 | Mask-RCNN, FPN | 6x | 42.7 | 38.6 | config | model | log |
Supervised | R-50 | Mask-RCNN, FPN | 6x | 42.6 | 38.5 | config | model | log |
InfoMin Aug. | R-50 | Mask-RCNN, FPN | 6x | 43.6 | 39.2 | config | model | log |
Mask-RCNN, C4:
Pretrain | Arch | Detector | lr sched |
box AP |
mask AP |
download |
---|---|---|---|---|---|---|
Supervised | R-50 | Mask-RCNN, C4 | 1x | 38.2 | 33.3 | config |
MoCo | R-50 | Mask-RCNN, C4 | 1x | 38.5 | 33.6 | config |
InfoMin Aug. | R-50 | Mask-RCNN, C4 | 1x | 39.0 | 34.1 | config |
Supervised | R-50 | Mask-RCNN, C4 | 2x | 40.0 | 34.7 | config |
MoCo | R-50 | Mask-RCNN, C4 | 2x | 40.7 | 35.6 | config |
InfoMin Aug. | R-50 | Mask-RCNN, C4 | 2x | 41.3 | 36.0 | config |
(2) Results with other architecture
See paper.