-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathec2_watchdata.py
executable file
·314 lines (274 loc) · 11.1 KB
/
ec2_watchdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#!/usr/bin/python
import sys
import time
import datetime
import pickle
import json
import syslog
import boto3
class WatchData:
dry = False
low_limit = 70
low_counter_limit = 0
high_counter_limit = 0
urgent_counter_limit = 0
kill_counter_limit = 0
high_limit = 90
high_urgent = 95
stats_period = 60
history_size = 0
increment = 1
def __init__(self, name):
self.name = name
self.datafile = "/tmp/watchdata-{}.p".format(self.name)
self.instances = 0
self.max_size = 0
self.min_size = 0
self.new_desired = 0
self.desired = 0
self.instances_info = {}
self.previous_instances = 0
self.action = ""
self.action_ts = 0
self.changed_ts = 0
self.total_load = 0
self.avg_load = 0
self.max_load = 0
self.min_load = 100000
self.up_ts = 0
self.down_ts = 0
self.low_counter = 0 # count the consecutive times a low conditions has been observed
self.high_counter = 0 # count the consecutive times a high conditions has been observed
self.urgent_counter = 0 # count the consecutive times a high conditions has been observed
self.kill_low_counter = 0 # count the consecutive times a kill instance condition has been observed
self.kill_high_counter = 0 # count the consecutive times a kill instance condition has been observed
self.max_loaded = None
self.min_loaded = None
self.loads = {}
self.measures = {}
self.emergency = False
self.history = None
self.trend = 0
self.exponential_average = 0
self.ts = 0
def __getstate__(self):
""" Don't store these objets """
d = self.__dict__.copy()
del d['autoscale']
del d['cw']
del d['group']
del d['instances_info']
return d
def connect(self):
self.autoscale = boto3.client('autoscaling')
self.cw = boto3.client('cloudwatch')
g = self.autoscale.describe_auto_scaling_groups(
AutoScalingGroupNames=[self.name], MaxRecords=100)
if len(g) < 1:
print("No instances found for AutoScaling group {}".format(
self.name))
sys.exit(1)
self.group = g['AutoScalingGroups'][0]
self.instances = len([
i for i in self.group['Instances']
if i['LifecycleState'] == 'InService'
]) # Check "InService"
self.desired = self.group['DesiredCapacity']
self.max_size = self.group['MaxSize']
self.min_size = self.group['MinSize']
self.name = self.name
self.ts = int(time.time())
def get_instances_info(self):
ec2 = boto3.client('ec2')
ids = [i['InstanceId'] for i in self.group['Instances']]
instances = ec2.describe_instances(InstanceIds=ids)
for r in instances['Reservations']:
for i in r['Instances']:
self.instances_info[i['InstanceId']] = i
def get_CPU_loads(self, periods=3):
""" Read instances load and store in data """
for instance in [
i['InstanceId'] for i in self.group['Instances']
if i['LifecycleState'] == 'InService'
]:
load = self.get_instance_CPU_load(instance, periods)
if load is None:
continue
self.total_load += load
self.loads[instance] = load
if load > self.max_load:
self.max_load = load
self.max_loaded = instance
if load < self.min_load:
self.min_load = load
self.min_loaded = instance
measures = total_load = 0
for instance, load in self.loads.iteritems():
if len(self.loads) < 3 or (instance != self.max_loaded and
instance != self.min_loaded):
measures += 1
total_load += load
if measures > 0:
self.avg_load = total_load / measures
def get_instance_CPU_load(self, instance, periods=3):
end = datetime.datetime.now()
start = end - datetime.timedelta(seconds=int(max(120, self.stats_period * periods)))
m = self.cw.get_metric_statistics(
Namespace="AWS/EC2",
MetricName="CPUUtilization",
Dimensions=[{
"Name": "InstanceId",
"Value": instance
}],
StartTime=start,
EndTime=end,
Period=self.stats_period,
Statistics=["Average"],
Unit="Percent",
)
if m['ResponseMetadata']['HTTPStatusCode'] != 200:
return None
if len(m['Datapoints']) > 0:
self.measures[instance] = len(m['Datapoints'])
p = [x['Average'] for x in m['Datapoints']]
return sum(p) / len(p)
# ordered = sorted(m['Datapoints'], key=lambda x: x['Timestamp'])
# return ordered[-1]['Average'] # Return last measure
return None
def from_file(self):
try:
data = pickle.load(open(self.datafile, "rb"))
except:
data = WatchData('_previous')
return data
def store(self):
if self.history_size > 0:
if not self.history: self.history = []
self.history.append([
int(time.time()), len(self.group['Instances']),
int(round(self.total_load)), int(round(self.avg_load))
])
self.history = self.history[-self.history_size:]
pickle.dump(self, open(self.datafile, "wb"))
def check_too_low(self):
candidates = False
for instance, load in self.loads.iteritems():
if load is not None and self.measures[
instance] > 1 and self.instances > 1 and load < self.avg_load * 0.2 and load < 4:
candidates = True
if self.kill_low_counter > self.kill_counter_limit:
self.emergency = True
self.check_avg_low(
) # Check if the desired instanes can be decreased
self.action = "Warning: terminated instance with low load (%s %5.2f%%) " % (
instance, load)
self.kill_low_counter = 0
self.kill_instance(instance, True)
return True
if candidates:
self.kill_low_counter += 1
else:
self.kill_low_counter = 0
return self.emergency
def check_too_high(self):
candidates = False
highload = False
for instance, load in self.loads.iteritems():
if load is None or self.measures[instance] <= 1:
continue
if self.instances > 2 and load > self.avg_load * (1.2 + 0.6/self.instances): # kill if it consumes more than 20... % of the average
candidates = True
if self.kill_high_counter > self.kill_counter_limit:
self.emergency = True
self.action = "Emergency: kill bad instance with high load (%s %5.2f%%) " % (
instance, load)
if self.avg_load < self.high_limit:
decrement = True
else:
decrement = False
self.kill_high_counter = 0
self.kill_instance(instance, decrement)
return True
if self.instances < self.max_size and load > self.high_urgent:
highload = True
if self.urgent_counter_limit > 0 and self.urgent_counter > self.urgent_counter_limit:
self.emergency = True
self.action = "Emergency: high load in one instance (%s %5.2f%% limit: %d counter: %d) " % (
instance, load, self.urgent_counter_limit, self.urgent_counter)
self.action += " increasing instances to %d" % (
self.instances + self.increment, )
self.set_desired(self.instances + self.increment)
self.urgent_counter = 0
return True
else:
self.urgent_counter = 0
if candidates:
self.kill_high_counter += 1
else:
self.kill_high_counter = 0
if highload:
self.urgent_counter += 1
else:
self.urgent_counter = 0
return self.emergency
def check_avg_high(self):
if self.instances >= self.max_size:
self.high_counter = 0
return False
if self.avg_load > self.high_limit:
self.high_counter += 1
if self.high_counter > self.high_counter_limit:
self.high_counter = 0
self.action = "WARN, high load (%5.2f/%5.2f): %d -> %d " % (
self.avg_load, self.high_limit, self.instances,
self.instances + self.increment)
self.set_desired(self.instances + self.increment)
self.high_counter = 0
return True
else:
self.high_counter = 0
return False
def check_avg_low(self):
if self.instances <= self.min_size or self.instances <= 1:
self.low_counter = 0
return False
if self.total_load / (self.instances - 1) < self.low_limit:
self.low_counter += 1
if self.low_counter > self.low_counter_limit:
self.action = "low load (%5.2f/%5.2f): %d -> %d " % (
self.avg_load, self.low_limit, self.instances,
self.instances - 1)
self.set_desired(self.instances - 1)
self.low_counter = 0
return True
else:
self.low_counter = 0
return False
def kill_instance(self, id, decrement):
if self.action:
print(self.action)
print("Kill instance", id)
syslog.syslog(syslog.LOG_INFO,
"ec2_watch kill_instance: %s instances: %d (%s)" %
(id, self.instances, self.action))
if self.dry:
return
if self.min_size > 0 and decrement and self.instances <= self.min_size:
decrement = False
syslog.syslog(syslog.LOG_INFO, "Forced to create a new instance")
self.autoscale.terminate_instance_in_auto_scaling_group(
InstanceId=id, ShouldDecrementDesiredCapacity=decrement)
self.action_ts = time.time()
def set_desired(self, desired):
if self.action:
print(self.action)
print("Setting instances from %d to %d" % (self.instances, desired))
syslog.syslog(syslog.LOG_INFO, "ec2_watch set_desired: %d -> %d (%s)" %
(self.instances, desired, self.action))
if self.dry:
return
if desired >= self.min_size and desired <= self.max_size:
self.autoscale.set_desired_capacity(
AutoScalingGroupName=self.name, DesiredCapacity=desired)
self.action_ts = time.time()
self.new_desired = desired