-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerate_glove_sim_dist.py
375 lines (324 loc) · 13.3 KB
/
generate_glove_sim_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import os
import re
import csv
import codecs
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from .utils import np_utils,nlp_utils,dist_utils,split_data
#embedd path
path = '../data/'
vector_size = 100
glove_dir = path+'glove.6B.{0}d.txt'.format(vector_size)
EMBEDDING_FILE = os.path.join(glove_dir)
TRAIN_DATA_FILE = path + 'train_clean.pkl'
TEST_DATA_FILE = path + 'test_clean.pkl'
ft = ['clean_question1','clean_question2']
MISSING_VALUE_NUMERIC = -1
train_data = pd.read_pickle(TRAIN_DATA_FILE)[ft]
test_data = pd.read_pickle(TEST_DATA_FILE)[ft]
data_all = np.vstack([train_data,test_data])
#feature base class
class Glove_BaseEstimator():
def __init__(self,model,vector_size=100,not_aggregator=1):
self.aggregation_mode_prev = ["mean", "max",'min','median']
self.aggregation_mode = ["mean", "std", "max", "median"]
self.aggregator = [None if m == "" else getattr(np, m) for m in self.aggregation_mode]
self.aggregator_prev = [None if m == "" else getattr(np, m) for m in self.aggregation_mode_prev]
self.not_aggregator = not_aggregator
self.vector_size = vector_size
self.model = model
def _get_valid_word_list(self,text):
return [w for w in text.lower().split(" ") if w in self.model]
#not oov ratio
def _get_importance(self,text1,text2):
len_prev_1 = len(text1.split(" "))
len_prev_2 = len(text2.split(" "))
len1 = len(self._get_valid_word_list(text1))
len2 = len(self._get_valid_word_list(text2))
imp = np_utils._try_divide(len1+len2,len_prev_1+len_prev_2)
return imp
def _get_importance_each(self,text1):
len_prev_1 = len(text1.split(" "))
len1 = len(self._get_valid_word_list(text1))
imp = np_utils._try_divide(len1,len_prev_1)
return imp
#sent mean vector
def _get_centroid_vector(self, text):
lst = self._get_valid_word_list(text)
centroid = np.zeros(self.vector_size)
for w in lst:
centroid += self.model[w]
if len(lst) > 0:
centroid /= float(len(lst))
return centroid
def _get_n_similarity(self,text1,text2):
lst1 = self._get_centroid_vector(text1)
lst2 = self._get_centroid_vector(text2)
if len(lst1)>0 and len(lst2)>0:
return dist_utils._calc_similarity(lst1,lst2)
def _get_n_similarity_imp(self,text1,text2):
sim = self._calc_similarity(text1,text2)
imp = self._get_importance(text1,text2)
return sim*imp
# v1 - v2
def _get_centroid_vdiff(self, text1, text2):
centroid1 = self._get_centroid_vector(text1)
centroid2 = self._get_centroid_vector(text2)
return dist_utils._vdiff(centroid1, centroid2)
#(v1-v2)^2
def _get_centroid_rmse(self, text1, text2):
centroid1 = self._get_centroid_vector(text1)
centroid2 = self._get_centroid_vector(text2)
return dist_utils._rmse(centroid1, centroid2)
def _get_centroid_rmse_imp(self, text1, text2):
rmse = self._get_centroid_rmse(text1, text2)
imp = self._get_importance(text1, text2)
return rmse * imp
def fit_transform(self,data_all):
score = list(map(self.transform_one, data_all[:, 0], data_all[:, 1]))
if self.not_aggregator:
return score
self.N = data_all.shape[0]
res = np.zeros((self.N, len(self.aggregator_prev) * len(self.aggregator)), dtype=float)
for m, aggregator_prev in enumerate(self.aggregator_prev):
for n, aggregator in enumerate(self.aggregator):
idx = m * len(self.aggregator) + n
for i in range(self.N):
# process in a safer way
try:
tmp = []
for l in score[i]:
try:
s = aggregator_prev(l)
except:
s = MISSING_VALUE_NUMERIC
tmp.append(s)
except:
tmp = [MISSING_VALUE_NUMERIC]
try:
s = aggregator(tmp)
except:
s = MISSING_VALUE_NUMERIC
res[i, idx] = s
return res
#feature class
class Glove_Centroid_Vector(Glove_BaseEstimator):
def __init__(self,model,vector_size=100,not_aggregator=1):
super().__init__(model,vector_size,not_aggregator)
def __name__(self):
return "Word2Vec_glove%d_Centroid_Vector"%( self.vector_size)
def transform_one(self, obs):
return self._get_centroid_vector(obs)
def fit_transform(self,data_all):
fea1 = list(map(self.transform_one, data_all[:, 0]))
fea2 = list(map(self.transform_one,data_all[:,1]))
return fea1,fea2
class Glove_Importance_each(Glove_BaseEstimator):
def __init__(self,model,vector_size=100,not_aggregator=1):
super().__init__(model,vector_size,not_aggregator)
def __name__(self):
return "Word2Vec_%d_Importance_each" % (self.vector_size)
def transform_one(self, obs):
return self._get_importance_each(obs)
def fit_transform(self,data_all):
fea1 = list(map(self.transform_one, data_all[:, 0]))
fea2 = list(map(self.transform_one,data_all[:,1]))
return fea1,fea2
# not oov ratio in two sentences
class Glove_Importance(Glove_BaseEstimator):
def __init__(self,model,vector_size=100,not_aggregator=1):
super().__init__(model,vector_size,not_aggregator)
def __name__(self):
return "Word2Vec_%d_Importance"%( self.vector_size)
def transform_one(self, obs,target):
return self._get_importance(obs,target)
class Glove_N_Similarity(Glove_BaseEstimator):
def __init__(self,model,vector_size=100,not_aggregator=1):
super().__init__(model,vector_size,not_aggregator)
def __name__(self):
return "Word2Vec_%d_Similarity" % (self.vector_size)
def transform_one(self, obs,target):
return self._get_n_similarity(obs,target)
def set_centroid(self,lst1,lst2):
self.lst1 = lst1
self.lst2 = lst2
self.has_centroid = True
def fit_transform(self,data_all):
if self.has_centroid:
return list(map(dist_utils._calc_similarity,self.lst1,self.lst2))
else:
return super().fit_transform(data_all)
class Glove_N_Similarity_imp(Glove_BaseEstimator):
def __init__(self,model,vector_size=100,not_aggregator=1):
super().__init__(model,vector_size,not_aggregator)
def __name__(self):
return "Word2Vec_%d_Similarity_imp" % (self.vector_size)
def transform_one(self, obs, target):
return self._get_n_similarity_imp(obs, target)
def set_centroid(self,lst1,lst2):
self.lst1 = lst1
self.lst2 = lst2
self.has_centroid = True
def set_imp(self,imp):
self.imp = imp
self.has_imp = True
def fit_transform(self,data_all):
if self.has_centroid:
if self.has_imp:
imp = self.imp
else:
imp = list(map(self._get_importance,data_all[:,0],data_all[:,1]))
sim = list(map(dist_utils._calc_similarity,self.lst1,self.lst2))
im_sim = np.array(imp)*np.array(sim)
return im_sim.tolist()
else:
return super().fit_transform(data_all)
class Glove_Centroid_RMSE(Glove_BaseEstimator):
def __init__(self,model,vector_size=100,not_aggregator=1):
super().__init__(model,vector_size,not_aggregator)
def __name__(self):
return "Word2Vec_%d_RMSE" % (self.vector_size)
def transform_one(self, obs, target):
return self._get_centroid_rmse(obs, target)
def set_centroid(self, lst1, lst2):
self.lst1 = lst1
self.lst2 = lst2
self.has_centroid = True
def fit_transform(self,data_all):
if self.has_centroid:
return list(map(dist_utils._rmse,self.lst1,self.lst2))
else:
return super().fit_transform(data_all)
class Glove_Centroid_RMSE_IMP(Glove_BaseEstimator):
def __init__(self,model,vector_size=100,not_aggregator=1):
super().__init__(model,vector_size,not_aggregator)
def __name__(self):
return "Word2Vec_%d_RMSE_IMP" % (self.vector_size)
def set_centroid(self, lst1, lst2):
self.lst1 = lst1
self.lst2 = lst2
self.has_centroid = True
def set_imp(self,imp):
self.imp = imp
self.has_imp = True
def transform_one(self, obs, target):
return self._get_centroid_rmse_imp(obs, target)
def fit_transform(self,data_all):
if self.has_centroid:
if self.has_imp:
imp = self.imp
else:
imp = list(map(self._get_importance,data_all[:,0],data_all[:,1]))
rms = list(map(dist_utils._rmse,self.lst1,self.lst2))
im_rms = np.array(imp)*np.array(rms)
return im_rms.tolist()
else:
return super().fit_transform(data_all)
class Glove_Centroid_Vdiff(Glove_BaseEstimator):
def __init__(self,model,vector_size=100,not_aggregator=1):
super().__init__(model,vector_size,not_aggregator)
def __name__(self):
return "Word2Vec_%d_Centroid_Vdiff" % (self.vector_size)
def transform_one(self, obs, target):
return self._get_centroid_vdiff(obs, target)
def set_centroid(self, lst1, lst2):
self.lst1 = lst1
self.lst2 = lst2
self.has_centroid = True
def fit_transform(self,data_all):
if self.has_centroid:
return list(map(dist_utils._vdiff,self.lst1,self.lst2))
else:
return super().fit_transform(data_all)
#each word sim
class Word2Vec_Sim(Glove_BaseEstimator):
def __init__(self,model,vector_size=100,not_aggregator=0):
super().__init__(model,vector_size,not_aggregator)
def transform_one(self, obs, target):
val_list = []
obs_tokens = nlp_utils._tokenize(obs)
target_tokens = nlp_utils._tokenize(target)
for obs_token in obs_tokens:
_val_list = []
if obs_token in self.model:
for target_token in target_tokens:
if target_token in self.model:
sim = dist_utils._calc_similarity(self.model[obs_token], self.model[target_token])
_val_list.append(sim)
if len(_val_list) == 0:
_val_list = [MISSING_VALUE_NUMERIC]
val_list.append(_val_list)
if len(val_list) == 0:
val_list = [[MISSING_VALUE_NUMERIC]]
return val_list
def get_Glove_Model(embedd_file):
return nlp_utils._get_embedd_Index(embedd_file)
if __name__ == '__main__':
Glove_model = get_Glove_Model(EMBEDDING_FILE)
print('generate CenterVec,Center_IMP,Vdiff')
gc = Glove_Centroid_Vector(Glove_model)
cv1,cv2 = gc.fit_transform(data_all)
gi = Glove_Importance_each(Glove_model)
im1,im2 = gi.fit_transform(data_all)
gi2 = Glove_Importance(Glove_model)
im = gi2.fit_transform(data_all)
gcv = Glove_Centroid_Vdiff(Glove_model)
gcv.set_centroid(cv1,cv2)
vdif = np.array(gcv.fit_transform(data_all))
fea_all = np.vstack([np.array(im1),np.array(im2),np.array(im)])
print('feature shape ',fea_all.T.shape)
# not calc oov
ft_generators_1 = [
Glove_N_Similarity,
Glove_Centroid_RMSE,
]
print('generate N_sim,Center_RMSE')
for i,ft_c in enumerate (ft_generators_1):
ft = ft_c(Glove_model)
ft.set_centroid(cv1,cv2)
fea = ft.fit_transform(data_all)
fea_all = np.vstack([fea_all,np.array(fea)])
print('feature shape ', fea_all.T.shape)
print('generate N_sim,Center_RMSE+IMP')
ft_generators_2 = [
Glove_N_Similarity_imp,
Glove_Centroid_RMSE_IMP,
]
for i,ft_c in enumerate (ft_generators_2):
ft = ft_c(Glove_model)
ft.set_centroid(cv1,cv2)
ft.set_imp(im)
fea = ft.fit_transform(data_all)
fea_all = np.vstack([fea_all,np.array(fea)])
print('feature shape ', fea_all.T.shape)
fea_all = fea_all.T
cv1 = np.array(cv1)
cv2 = np.array(cv2)
train_vec_1 = cv1[:train_data.shape[0]]
train_vec_2 = cv2[:train_data.shape[0]]
train_diff = vdif[:train_data.shape[0]]
train_vec = np.hstack([train_vec_1,train_vec_2,train_diff])
pd.to_pickle(train_vec, path + 'train_glove_vec.pkl')
test_vec_1 = cv1[train_data.shape[0]:]
test_vec_2 = cv2[train_data.shape[0]:]
test_diff = vdif[train_data.shape[0]:]
test_vec = np.hstack([test_vec_1,test_vec_2,test_diff])
test_v_x = split_data.split_test(test_vec)
for i in range(6):
pd.to_pickle(test_v_x[i],path+'test_glove_vec{0}.pkl'.format(i))
train_fea = fea_all[:train_data.shape[0]]
test_fea = fea_all[train_data.shape[0]:]
#word2word sim feature approximatly need 9 hours
ws = Word2Vec_Sim(Glove_model,not_aggregator=0)
print('generate w2w features')
w2w_sim = ws.fit_transform(data_all)
train_w2w = w2w_sim[:train_data.shape[0]]
test_w2w = w2w_sim[train_data.shape[0]:]
path = '../X_v3/'
pd.to_pickle(train_fea,path+'train_glove_sim_dist.pkl')
pd.to_pickle(test_fea,path+'test_glove_sim_dist.pkl')
#
# pd.to_pickle(test_vec,path+'test_glove_vec.pkl')
pd.to_pickle(train_w2w,path+'train_w2w.pkl')
pd.to_pickle(test_w2w,path+'test_w2w.pkl')