-
Notifications
You must be signed in to change notification settings - Fork 3
/
generate_magic_lstm.py
340 lines (271 loc) · 11.5 KB
/
generate_magic_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
'''
Example of an LSTM model with GloVe embeddings along with magic features
Tested under Keras 2.0 with Tensorflow 1.0 backend
Single model may achieve LB scores at around 0.18+, average ensembles can get 0.17+
'''
########################################
## import packages
########################################
import os
import re
import csv
import codecs
import numpy as np
import pandas as pd
from string import punctuation
from collections import defaultdict
from nltk.corpus import stopwords
from nltk.stem import SnowballStemmer
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Dense, Input, LSTM, Embedding, Dropout, Activation
from keras.layers.merge import concatenate
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.preprocessing import StandardScaler
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
########################################
## set directories and parameters
########################################
BASE_DIR = '../input/'
EMBEDDING_FILE = BASE_DIR + 'glove.840B.300d.txt'
TRAIN_DATA_FILE = BASE_DIR + 'train.csv'
TEST_DATA_FILE = BASE_DIR + 'test.csv'
MAX_SEQUENCE_LENGTH = 30
MAX_NB_WORDS = 200000
EMBEDDING_DIM = 300
VALIDATION_SPLIT = 0.1
num_lstm = np.random.randint(175, 275)
num_dense = np.random.randint(100, 150)
rate_drop_lstm = 0.15 + np.random.rand() * 0.25
rate_drop_dense = 0.15 + np.random.rand() * 0.25
act = 'relu'
re_weight = True # whether to re-weight classes to fit the 17.5% share in test set
STAMP = 'lstm_%d_%d_%.2f_%.2f' % (num_lstm, num_dense, rate_drop_lstm, \
rate_drop_dense)
########################################
## index word vectors
########################################
print('Indexing word vectors')
embeddings_index = {}
f = open(EMBEDDING_FILE)
count = 0
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
print('Found %d word vectors of glove.' % len(embeddings_index))
########################################
## process texts in datasets
########################################
print('Processing text dataset')
# The function "text_to_wordlist" is from
# https://www.kaggle.com/currie32/quora-question-pairs/the-importance-of-cleaning-text
def text_to_wordlist(text, remove_stopwords=False, stem_words=False):
# Clean the text, with the option to remove stopwords and to stem words.
# Convert words to lower case and split them
text = text.lower().split()
# Optionally, remove stop words
if remove_stopwords:
stops = set(stopwords.words("english"))
text = [w for w in text if not w in stops]
text = " ".join(text)
# Clean the text
text = re.sub(r"[^A-Za-z0-9^,!.\/'+-=]", " ", text)
text = re.sub(r"what's", "what is ", text)
text = re.sub(r"\'s", " ", text)
text = re.sub(r"\'ve", " have ", text)
text = re.sub(r"can't", "cannot ", text)
text = re.sub(r"n't", " not ", text)
text = re.sub(r"i'm", "i am ", text)
text = re.sub(r"\'re", " are ", text)
text = re.sub(r"\'d", " would ", text)
text = re.sub(r"\'ll", " will ", text)
text = re.sub(r",", " ", text)
text = re.sub(r"\.", " ", text)
text = re.sub(r"!", " ! ", text)
text = re.sub(r"\/", " ", text)
text = re.sub(r"\^", " ^ ", text)
text = re.sub(r"\+", " + ", text)
text = re.sub(r"\-", " - ", text)
text = re.sub(r"\=", " = ", text)
text = re.sub(r"'", " ", text)
text = re.sub(r"(\d+)(k)", r"\g<1>000", text)
text = re.sub(r":", " : ", text)
text = re.sub(r" e g ", " eg ", text)
text = re.sub(r" b g ", " bg ", text)
text = re.sub(r" u s ", " american ", text)
text = re.sub(r"\0s", "0", text)
text = re.sub(r" 9 11 ", "911", text)
text = re.sub(r"e - mail", "email", text)
text = re.sub(r"j k", "jk", text)
text = re.sub(r"\s{2,}", " ", text)
# Optionally, shorten words to their stems
if stem_words:
text = text.split()
stemmer = SnowballStemmer('english')
stemmed_words = [stemmer.stem(word) for word in text]
text = " ".join(stemmed_words)
# Return a list of words
return (text)
texts_1 = []
texts_2 = []
labels = []
with codecs.open(TRAIN_DATA_FILE, encoding='utf-8') as f:
reader = csv.reader(f, delimiter=',')
header = next(reader)
for values in reader:
texts_1.append(text_to_wordlist(values[3]))
texts_2.append(text_to_wordlist(values[4]))
labels.append(int(values[5]))
print('Found %s texts in train.csv' % len(texts_1))
test_texts_1 = []
test_texts_2 = []
test_ids = []
with codecs.open(TEST_DATA_FILE, encoding='utf-8') as f:
reader = csv.reader(f, delimiter=',')
header = next(reader)
for values in reader:
test_texts_1.append(text_to_wordlist(values[1]))
test_texts_2.append(text_to_wordlist(values[2]))
test_ids.append(values[0])
print('Found %s texts in test.csv' % len(test_texts_1))
tokenizer = Tokenizer(num_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(texts_1 + texts_2 + test_texts_1 + test_texts_2)
sequences_1 = tokenizer.texts_to_sequences(texts_1)
sequences_2 = tokenizer.texts_to_sequences(texts_2)
test_sequences_1 = tokenizer.texts_to_sequences(test_texts_1)
test_sequences_2 = tokenizer.texts_to_sequences(test_texts_2)
word_index = tokenizer.word_index
print('Found %s unique tokens' % len(word_index))
data_1 = pad_sequences(sequences_1, maxlen=MAX_SEQUENCE_LENGTH)
data_2 = pad_sequences(sequences_2, maxlen=MAX_SEQUENCE_LENGTH)
labels = np.array(labels)
print('Shape of data tensor:', data_1.shape)
print('Shape of label tensor:', labels.shape)
test_data_1 = pad_sequences(test_sequences_1, maxlen=MAX_SEQUENCE_LENGTH)
test_data_2 = pad_sequences(test_sequences_2, maxlen=MAX_SEQUENCE_LENGTH)
test_ids = np.array(test_ids)
########################################
## generate leaky features
########################################
train_df = pd.read_csv(TRAIN_DATA_FILE)
test_df = pd.read_csv(TEST_DATA_FILE)
ques = pd.concat([train_df[['question1', 'question2']], \
test_df[['question1', 'question2']]], axis=0).reset_index(drop='index')
q_dict = defaultdict(set)
for i in range(ques.shape[0]):
q_dict[ques.question1[i]].add(ques.question2[i])
q_dict[ques.question2[i]].add(ques.question1[i])
def q1_freq(row):
return (len(q_dict[row['question1']]))
def q2_freq(row):
return (len(q_dict[row['question2']]))
def q1_q2_intersect(row):
return (len(set(q_dict[row['question1']]).intersection(set(q_dict[row['question2']]))))
train_df['q1_q2_intersect'] = train_df.apply(q1_q2_intersect, axis=1, raw=True)
train_df['q1_freq'] = train_df.apply(q1_freq, axis=1, raw=True)
train_df['q2_freq'] = train_df.apply(q2_freq, axis=1, raw=True)
test_df['q1_q2_intersect'] = test_df.apply(q1_q2_intersect, axis=1, raw=True)
test_df['q1_freq'] = test_df.apply(q1_freq, axis=1, raw=True)
test_df['q2_freq'] = test_df.apply(q2_freq, axis=1, raw=True)
leaks = train_df[['q1_q2_intersect', 'q1_freq', 'q2_freq']]
test_leaks = test_df[['q1_q2_intersect', 'q1_freq', 'q2_freq']]
ss = StandardScaler()
ss.fit(np.vstack((leaks, test_leaks)))
leaks = ss.transform(leaks)
test_leaks = ss.transform(test_leaks)
########################################
## prepare embeddings
########################################
print('Preparing embedding matrix')
nb_words = min(MAX_NB_WORDS, len(word_index)) + 1
embedding_matrix = np.zeros((nb_words, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index. get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
print('Null word embeddings: %d' % np.sum(np.sum(embedding_matrix, axis=1) == 0))
########################################
## sample train/validation data
########################################
# np.random.seed(1234)
perm = np.random.permutation(len(data_1))
idx_train = perm[:int(len(data_1) * (1 - VALIDATION_SPLIT))]
idx_val = perm[int(len(data_1) * (1 - VALIDATION_SPLIT)):]
data_1_train = np.vstack((data_1[idx_train], data_2[idx_train]))
data_2_train = np.vstack((data_2[idx_train], data_1[idx_train]))
leaks_train = np.vstack((leaks[idx_train], leaks[idx_train]))
labels_train = np.concatenate((labels[idx_train], labels[idx_train]))
data_1_val = np.vstack((data_1[idx_val], data_2[idx_val]))
data_2_val = np.vstack((data_2[idx_val], data_1[idx_val]))
leaks_val = np.vstack((leaks[idx_val], leaks[idx_val]))
labels_val = np.concatenate((labels[idx_val], labels[idx_val]))
weight_val = np.ones(len(labels_val))
if re_weight:
weight_val *= 0.472001959
weight_val[labels_val == 0] = 1.309028344
########################################
## define the model structure
########################################
embedding_layer = Embedding(nb_words,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,
trainable=False)
lstm_layer = LSTM(num_lstm, dropout=rate_drop_lstm, recurrent_dropout=rate_drop_lstm)
sequence_1_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
embedded_sequences_1 = embedding_layer(sequence_1_input)
x1 = lstm_layer(embedded_sequences_1)
sequence_2_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
embedded_sequences_2 = embedding_layer(sequence_2_input)
y1 = lstm_layer(embedded_sequences_2)
leaks_input = Input(shape=(leaks.shape[1],))
leaks_dense = Dense(num_dense / 2, activation=act)(leaks_input)
merged = concatenate([x1, y1, leaks_dense])
merged = Dropout(rate_drop_dense)(merged)
merged = BatchNormalization()(merged)
merged = Dense(num_dense, activation=act)(merged)
merged = Dropout(rate_drop_dense)(merged)
merged = BatchNormalization()(merged)
preds = Dense(1, activation='sigmoid')(merged)
########################################
## add class weight
########################################
if re_weight:
class_weight = {0: 1.309028344, 1: 0.472001959}
else:
class_weight = None
########################################
## train the model
########################################
model = Model(inputs=[sequence_1_input, sequence_2_input, leaks_input], \
outputs=preds)
model.compile(loss='binary_crossentropy',
optimizer='nadam',
metrics=['acc'])
# model.summary()
print(STAMP)
early_stopping = EarlyStopping(monitor='val_loss', patience=3)
bst_model_path = STAMP + '.h5'
model_checkpoint = ModelCheckpoint(bst_model_path, save_best_only=True, save_weights_only=True)
hist = model.fit([data_1_train, data_2_train, leaks_train], labels_train, \
validation_data=([data_1_val, data_2_val, leaks_val], labels_val, weight_val), \
epochs=200, batch_size=2048, shuffle=True, \
class_weight=class_weight, callbacks=[early_stopping, model_checkpoint])
model.load_weights(bst_model_path)
bst_val_score = min(hist.history['val_loss'])
########################################
## make the submission
########################################
print('Start making the submission before fine-tuning')
preds = model.predict([test_data_1, test_data_2, test_leaks], batch_size=8192, verbose=1)
preds += model.predict([test_data_2, test_data_1, test_leaks], batch_size=8192, verbose=1)
preds /= 2
submission = pd.DataFrame({'test_id': test_ids, 'is_duplicate': preds.ravel()})
submission.to_csv('%.4f_' % (bst_val_score) + STAMP + '.csv', index=False)