forked from dsindex/segm-lstm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_emb.py
125 lines (111 loc) · 4.51 KB
/
inference_emb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/bin/env python
#-*- coding: utf8 -*-
import sys
import os
import re
from optparse import OptionParser
import numpy as np
import tensorflow as tf
import util
import model
# --verbose
VERBOSE = 0
if __name__ == '__main__':
parser = OptionParser()
parser.add_option("--verbose", action="store_const", const=1, dest="verbose", help="verbose mode")
parser.add_option("-e", "--embedding", dest="embedding_dir", help="dir path to embeddings and vocab", metavar="embedding_dir")
parser.add_option("-m", "--model", dest="model_dir", help="dir path to load model", metavar="model_dir")
(options, args) = parser.parse_args()
if options.verbose == 1 : VERBOSE = 1
model_dir = options.model_dir
embedding_dir = options.embedding_dir
if not model_dir or not embedding_dir == None :
parser.print_help()
sys.exit(1)
# config
n_steps = 30 # time steps
padd = '\t' # special padding chracter
char_dic, id2ch, id2emb, embedding_dim = util.build_dictionary_emb(embedding_dir)
n_input = embedding_dim # input dimension, embedding dimension size
n_hidden = 8 # hidden layer size
n_classes = 2 # output classes, space or not
vocab_size = n_input
x = tf.placeholder(tf.float32, [None, n_steps, n_input])
y_ = tf.placeholder(tf.int32, [None, n_steps])
early_stop = tf.placeholder(tf.int32)
# LSTM layer
# 2 x n_hidden = state_size = (hidden state & cell state)
istate = tf.placeholder(tf.float32, [None, 2*n_hidden])
weights = {
'hidden' : model.weight_variable([n_input, n_hidden]),
'out' : model.weight_variable([n_hidden, n_classes])
}
biases = {
'hidden' : model.bias_variable([n_hidden]),
'out': model.bias_variable([n_classes])
}
y = model.RNN(x, istate, weights, biases, n_hidden, n_steps, n_input, early_stop)
batch_size = 1
logits = tf.reshape(tf.concat(y, 1), [-1, n_classes])
NUM_THREADS = 1
config = tf.ConfigProto(intra_op_parallelism_threads=NUM_THREADS,
inter_op_parallelism_threads=NUM_THREADS,
log_device_placement=False)
sess = tf.Session(config=config)
init = tf.global_variables_initializer()
sess.run(init)
saver = tf.train.Saver() # save all variables
checkpoint_dir = model_dir
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path :
saver.restore(sess, ckpt.model_checkpoint_path)
sys.stderr.write("model restored from %s\n" %(ckpt.model_checkpoint_path))
else :
sys.stderr.write("no checkpoint found" + '\n')
sys.exit(-1)
i = 0
while 1 :
try : line = sys.stdin.readline()
except KeyboardInterrupt : break
if not line : break
line = line.strip()
if not line : continue
line = line.decode('utf-8')
sentence = line
sentence_size = len(sentence)
tag_vector = [-1]*(sentence_size+n_steps) # buffer n_steps
pos = 0
while pos != -1 :
batch_xs, batch_ys, next_pos, count = util.next_batch_emb(sentence, pos, char_dic, id2emb, n_steps, padd)
'''
print 'window : ' + sentence[pos:pos+n_steps].encode('utf-8')
print 'count : ' + str(count)
print 'next_pos : ' + str(next_pos)
print batch_ys
'''
c_istate = np.zeros((batch_size, 2*n_hidden))
feed={x: batch_xs, y_: batch_ys, istate: c_istate, early_stop:count}
argmax = tf.arg_max(logits, 1)
result = sess.run(argmax, feed_dict=feed)
# overlapped copy and merge
j = 0
result_size = len(result)
while j < result_size :
tag = result[j]
if tag_vector[pos+j] == -1 :
tag_vector[pos+j] = tag
else :
if tag_vector[pos+j] == util.CLASS_1 : # 1
if tag == util.CLASS_0 : # 1 -> 0
sys.stderr.write("1->0\n")
tag_vector[pos+j] = tag
else : # 0
if tag == util.CLASS_1 : # 0 -> 1
sys.stderr.write("0->1\n")
tag_vector[pos+j] = tag
j += 1
pos = next_pos
# generate output using tag_vector
print 'out = ' + util.to_sentence(tag_vector, sentence)
i += 1
sess.close()