-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayer.jl
322 lines (251 loc) · 9.11 KB
/
layer.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
@testset "find_bounds" begin
l1 = TransferMatrix.Layer(RefractiveMaterial("main", "Au", "Rakic-LD"), 1)
l2 = TransferMatrix.Layer(RefractiveMaterial("main", "SiO2", "Malitson"), 2)
l3 = TransferMatrix.Layer(RefractiveMaterial("main", "Au", "Rakic-LD"), 3)
layers = [l1, l2, l3]
interface_positions, total_thickness = TransferMatrix.find_bounds(layers)
@test interface_positions == [1.0, 3.0, 6.0]
@test total_thickness == 6.0
end
@testset "refractive_index" begin
air = RefractiveMaterial("other", "air", "Ciddor")
au = RefractiveMaterial("main", "Au", "Rakic-LD")
@test TransferMatrix.refractive_index(air)(1.0) == 1.0002741661312147 + 0.0im
@test TransferMatrix.refractive_index(au)(1.0) == 0.2557301597051597 + 5.986408108108109im
λs = [1.0, 2.0, 3.0]
ns = [1.5, 2.0, 2.5]
ks = [0.5, 1.0, 1.5]
refractive_index_func = refractive_index(λs, ns, ks)
@test refractive_index_func(1.0) == 1.5 + 0.5im
@test refractive_index_func(2.0) == 2.0 + 1.0im
@test refractive_index_func(3.0) == 2.5 + 1.5im
end
@testset "dielectric_constant" begin
au = RefractiveMaterial("main", "Au", "Rakic-LD")
l = TransferMatrix.Layer(au, 1.0)
ε = TransferMatrix.dielectric_constant.([1.0, 1.0, 1.0], [2.0, 2.0, 2.0])
@test real(ε) == [-3.0, -3.0, -3.0]
@test imag(ε) == [4.0, 4.0, 4.0]
@test TransferMatrix.dielectric_constant(1.0, 2.0) == -3.0 + 4.0im
@test TransferMatrix.dielectric_constant(1.0 + 2.0im) == -3.0 + 4.0im
end
@testset "dielectric_tensor" begin
@test TransferMatrix.dielectric_tensor(1.0, 1.0, 1.0) == [1.0 0 0; 0 1.0 0; 0 0 1.0]
@test TransferMatrix.dielectric_tensor(1.0 + 1.0im, 1.0 + 1.0im, 1.0) == [complex(1.0, 1.0) 0 0; 0 complex(1.0, 1.0) 0; 0 0 1.0]
end
@testset "permeability_tensor" begin
μ1, μ2, μ3 = 1.0 + 1.0im, 2.0 + 2.0im, 3.0 + 3.0im
expected_tensor = Diagonal(SVector{3, ComplexF64}(μ1, μ2, μ3))
@test TransferMatrix.permeability_tensor(μ1, μ2, μ3) == expected_tensor
end
@testset "construct_M" begin
ε_i = (1.0 + 2.0im)^2
μ_i = 1.0 + 0.0im
ε = Diagonal([ε_i, ε_i, ε_i])
μ = Diagonal(fill(μ_i, 3))
ρ1 = [1.0 2.0 3.0; 4.0 5.0 6.0; 7.0 8.0 9.0]
ρ2 = [9.0 8.0 7.0; 6.0 5.0 4.0; 3.0 2.0 1.0]
M1 = TransferMatrix.construct_M(ε, μ, ρ1, ρ2)
M1_true = [
ε_i 0.0 0.0 1.0 2.0 3.0;
0.0 ε_i 0.0 4.0 5.0 6.0;
0.0 0.0 ε_i 7.0 8.0 9.0;
9.0 8.0 7.0 μ_i 0.0 0.0;
6.0 5.0 4.0 0.0 μ_i 0.0;
3.0 2.0 1.0 0.0 0.0 μ_i
]
M2 = TransferMatrix.construct_M(ε, μ)
M2_true = [
ε_i 0.0 0.0 0.0 0.0 0.0;
0.0 ε_i 0.0 0.0 0.0 0.0;
0.0 0.0 ε_i 0.0 0.0 0.0;
0.0 0.0 0.0 μ_i 0.0 0.0;
0.0 0.0 0.0 0.0 μ_i 0.0;
0.0 0.0 0.0 0.0 0.0 μ_i
]
M3 = TransferMatrix.construct_M(ε)
M3_true = [
ε_i 0.0 0.0 0.0 0.0 0.0;
0.0 ε_i 0.0 0.0 0.0 0.0;
0.0 0.0 ε_i 0.0 0.0 0.0;
0.0 0.0 0.0 1.0 0.0 0.0;
0.0 0.0 0.0 0.0 1.0 0.0;
0.0 0.0 0.0 0.0 0.0 1.0
]
@test M1 == M1_true
@test M2 == M2_true
@test M3 == M3_true
end
@testset "construct_a" begin
# Test orthorhombic crystal with principal axes
# parallel to x, y, z. M is constant and diagonal.
# The only nonzero coefficients are
# a[3,5] = -ξ / M[3, 3]
# a[6,2] = ξ / M[6, 6]
# Berreman, Optics in Stratefied and Anisotropic Media, 1972
# DOI: 10.1364/JOSA.62.000502
ξ = 15.0 + 15im
ε = Diagonal([1 + 1im, 1 + 1im, 1 + 1im])
μ = Diagonal([1 + 0im, 1 + 0im, 1 + 0im])
ε[3,3] = 3.0 + 0im
μ[3,3] = 0.0 + 5im
M = @MMatrix zeros(ComplexF64, 6, 6)
M[1:3, 1:3] = ε
M[4:6, 4:6] = μ
a = TransferMatrix.construct_a(ξ, M)
to_subtract = @MMatrix zeros(ComplexF64, 6, 6)
to_subtract[3,5] = -5.0 - 5im
to_subtract[6,2] = 3.0 - 3im
b = a - to_subtract
test_against = zeros(ComplexF64, 6, 6)
@test isapprox(b, zeros(ComplexF64, 6, 6), atol=1e-15)
end
@testset "construct_Δ" begin
# Continue the test from `construct_a`.
# For an orthorhombic crystal described above, the only nonzero elements of Δ are
# Δ[2,1] = M[1,1] = ε[1,1]
# Δ[4,3] = M[2,2] - ξ^2 / M[6,6] = ε[2,2] - ξ^2 / μ[3,3]
# Δ[3,4] = M[4,4] = μ[1,1]
# Δ[1,2] = M[5,5] - ξ^2 / M[3,3] = μ[2,2] - ξ^2 / ε[3,3]
ξ = 0.
ε = Diagonal([1 + 1im, 1 + 1im, 1 + 1im])
μ = Diagonal([1 + 0im, 1 + 0im, 1 + 0im])
ε[3,3] = 3.0 + 0im
μ[3,3] = 0.0 + 5im
M = zeros(ComplexF64, 6, 6)
M[1:3, 1:3] = ε
M[4:6, 4:6] = μ
a = TransferMatrix.construct_a(ξ, M)
Δ = TransferMatrix.construct_Δ(ξ, M, a)
Δ21 = ε[1,1]
Δ43 = ε[2,2] - ξ^2 / μ[3,3]
Δ34 = μ[1,1]
Δ12 = μ[2,2] - ξ^2 / ε[3,3]
Δ_squared = Diagonal([Δ12 * Δ21, Δ12 * Δ21, Δ34 * Δ43, Δ34 * Δ43])
Δ_cubed = Δ^3
@test Δ^2 == Δ_squared
@test Δ_cubed[1,1] == 0.0 + 0im
@test Δ_cubed[1,2] == Δ12^2 * Δ21
ξ = 1.0 + 1.0im
M = rand(ComplexF64, 6, 6)
a = rand(ComplexF64, 6, 6)
Δ = TransferMatrix.construct_Δ(ξ, M, a)
@test Δ[1,1] == M[5,1] + (M[5,3] + ξ) * a[3,1] + M[5,6] * a[6,1]
@test Δ[1,2] == M[5,5] + (M[5,3] + ξ) * a[3,5] + M[5,6] * a[6,5]
@test Δ[1,3] == M[5,2] + (M[5,3] + ξ) * a[3,2] + M[5,6] * a[6,2]
@test Δ[1,4] == -M[5,4] - (M[5,3] + ξ) * a[3,4] - M[5,6] * a[6,4]
@test Δ[2,1] == M[1,1] + M[1,3] * a[3,1] + M[1,6] * a[6,1]
@test Δ[2,2] == M[1,5] + M[1,3] * a[3,5] + M[1,6] * a[6,5]
@test Δ[2,3] == M[1,2] + M[1,3] * a[3,2] + M[1,6] * a[6,2]
@test Δ[2,4] == -M[1,4] - M[1,3] * a[3,4] - M[1,6] * a[6,4]
@test Δ[3,1] == -M[4,1] - M[4,3] * a[3,1] - M[4,6] * a[6,1]
@test Δ[3,2] == -M[4,5] - M[4,3] * a[3,5] - M[4,6] * a[6,5]
@test Δ[3,3] == -M[4,2] - M[4,3] * a[3,2] - M[4,6] * a[6,2]
@test Δ[3,4] == M[4,4] + M[4,3] * a[3,4] + M[4,6] * a[6,4]
@test Δ[4,1] == M[2,1] + M[2,3] * a[3,1] + (M[2,6] - ξ) * a[6,1]
@test Δ[4,2] == M[2,5] + M[2,3] * a[3,5] + (M[2,6] - ξ) * a[6,5]
@test Δ[4,3] == M[2,2] + M[2,3] * a[3,2] + (M[2,6] - ξ) * a[6,2]
@test Δ[4,4] == -M[2,4] - M[2,3] * a[3,4] - (M[2,6] - ξ) * a[6,4]
end
@testset "calculate_γ" begin
μ = 1.0
ξ1 = 0.0
ξ2 = 1.0
ξ3 = 1.0 + 1im
ε1 = I
ε2 = fill(1, (3, 3))
ε3 = [3 1 1 ; 1 2 1 ; 1 1 2]
ε4 = [1 1 1 ; 1 1 1 ; 1 1 2]
ε5 = [1 + 1im 1 1;
1 1 + 1im 1;
1 1 2 + 2im]
q1 = [1., 1., 1., 1.]
q2 = [1., 2., 1., 2.]
q3 = [1. + 1im, 1. + 1im, 1. + 1im, 1. + 1im]
q4 = [1. + 1im, 2. + 1im, 1. + 1im, 2. + 1im]
γ1 = TransferMatrix.calculate_γ(ξ1, q1, ε1, μ)
γ2 = TransferMatrix.calculate_γ(ξ1, q1, ε2, μ)
γ3 = TransferMatrix.calculate_γ(ξ2, q2, ε3, μ)
γ4 = TransferMatrix.calculate_γ(ξ2, q1, ε4, μ)
γ5 = TransferMatrix.calculate_γ(ξ3, q3, ε5, μ)
γ6 = TransferMatrix.calculate_γ(ξ3, q4, ε5, μ)
γ1_test = ComplexF64[
1 0 0;
0 1 0;
-1 0 0;
0 1 0
]
γ2_test = ComplexF64[
1 0 -1;
0 1 -1;
-1 0 1;
0 1 -1
]
γ3_test = ComplexF64[
1.0 -1.0 -1.0;
-0.2 1.0 -0.4;
-1.0 1.0 3.0;
-0.2 1.0 -0.4
]
γ4_test = ComplexF64[
1.0 0.0 -2.0;
0.0 1.0 -1.0;
-1.0 0.0 2.0;
0.0 1.0 -1.0
]
γ5_test = ComplexF64[
1.0 0.0 -0.5 - 1im;
0.0 1.0 -0.5;
-1.0 0.0 0.5 + 1im;
0.0 1.0 -0.5
]
γ6_test = ComplexF64[
1.0+0.0im -0.351351-0.108108im -0.324324-0.945946im
-0.166154+0.00923077im 1.0+0.0im -0.32+0.24im
-1.0+0.0im 0.351351+0.108108im 0.675676+1.05405im
-0.166154+0.00923077im 1.0+0.0im -0.32+0.24im
]
for m in 1:4
γ2_test[m, :] /= √(γ2_test[m, :] ⋅ γ2_test[m, :]')
γ3_test[m, :] /= √(γ3_test[m, :] ⋅ γ3_test[m, :]')
γ4_test[m, :] /= √(γ4_test[m, :] ⋅ γ4_test[m, :]')
γ5_test[m, :] /= √(γ5_test[m, :] ⋅ γ5_test[m, :]')
γ6_test[m, :] /= √(γ6_test[m, :] ⋅ γ6_test[m, :]')
end
@test γ1 == γ1_test
@test γ2 == γ2_test
@test isapprox(γ3, γ3_test)
@test isapprox(γ4, γ4_test)
@test isapprox(γ5, γ5_test)
@test isapprox(γ6, γ6_test, atol=1e-5)
end
@testset "dynamical_matrix" begin
γ = ComplexF64[
11 12 13;
21 22 23;
31 32 33;
41 42 43]
q = ComplexF64[1, 2, 3, 4]
ξ = 1.0 + 1.0im
μ = 2.0
A_test = ComplexF64[
11 21 31 41
12 22 32 42
-2 - 13im 19 - 23im 60 - 33im 121 - 43im
12 44 96 168
]
A_test[3, :] ./= μ
A_test[4, :] ./= μ
A = TransferMatrix.dynamical_matrix(ξ, q, γ, μ)
for (i, col) in enumerate(eachrow(A))
@test A[:, i] == A_test[:, i]
end
end
@testset "propagation_matrix" begin
q = [1., 2., 3., 4.]
d = π / 2
ω = c_0
P_test = Diagonal([-1.0im, -1.0, 1.0im, 1.0])
P = TransferMatrix.propagation_matrix(ω, q)
@test P(d) ≈ P_test
end