-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcenterloss.py
42 lines (40 loc) · 2.32 KB
/
centerloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import torch.nn as nn
import scipy.spatial
class CenterLoss(nn.Module):
"""Center loss.
Reference:
Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
Args:
num_classes (int): number of classes.
feat_dim (int): feature dimension.
"""
def __init__(self, num_classes=10, feat_dim=2, use_gpu=True):
super(CenterLoss, self).__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.use_gpu = use_gpu
if self.use_gpu:
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda())
else:
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim))
def forward(self, x, labels):
"""
Args:
x: feature matrix with shape (batch_size, feat_dim).
labels: ground truth labels with shape (batch_size).
"""
batch_size = x.size(0)
#dim=1按行求和 dismat是一个(batch_size,num_classes)的矩阵,每一行的200个数相同,代表一个样本的200的特征的组合,
distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \
torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()
distmat.addmm_(1, -2, x, self.centers.t())#1 × dismat + (-2)×(self.centers.t() @ self.centers.t())
classes = torch.arange(self.num_classes).long()#tensor([ 0, 1, 2, 3......])
if self.use_gpu:
classes = classes.cuda()
labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)#0代表第一维度,1代表第二维度 squeeze是去掉某个维度,unsqueeze是增加一个维度,不管是去掉还是增加的都是1。原来是(2,3),如果在第二维上增加就是(2,1,3)
#label的样子是batch_size行,每一行的数字相同(是类别名)
mask = labels.eq(classes.expand(batch_size, self.num_classes))#对应位置比较是否相等,相等该位置为1,不等为0
dist = distmat * mask.float()
loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_size#最小的是10的负12次方将dist中不在min~max之间的数值调整过来
return loss